首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first direct catalytic asymmetric alpha-amination of aldehydes is described herein. alpha-Unbranched aldehydes react in this novel proline-catalyzed reaction with dialkyl azodicarboxylates to give alpha-amino aldehydes in excellent yields and enantioselectivities.  相似文献   

2.
The direct proline-catalyzed asymmetric alpha-aminoxylation of aldehydes and ketones has been developed using nitrosobenzene as an oxygen source, affording alpha-anilinoxy-aldehydes and -ketones with excellent enantioselectivity. Reaction conditions have been optimized, and low temperature (-20 degrees C) was found to be a key for the successful alpha-aminoxylation of aldehydes, while slow addition of nitrosobenzene is essential for that of ketones. The scope of the reaction is presented.  相似文献   

3.
We have developed proline-catalyzed direct asymmetric three-component Mannich reactions of ketones, aldehydes, and amines. Several of the studied reactions provide beta-amino carbonyl compounds (Mannich products) in excellent enantio-, diastereo-, regio-, and chemoselectivities. The scope of each of the three components and the influence of the catalyst structure on the reaction are described. Reaction conditions have been optimized, and the mechanism and source of asymmetric induction are discussed. We further present application of our reaction to the highly enantioselective synthesis of 1,2-amino alcohols.  相似文献   

4.
The first proline-catalyzed direct catalytic asymmetric one-pot, three-component cross-Mannich reaction has been developed. The highly chemoselective reactions between two different unmodified aldehydes and one aromatic amine are new routes to 3-amino aldehydes with dr>19:1 and up to >99 % ee. The asymmetric cross-Mannich reactions are highly syn-selective and in several cases the two new carbon centers are formed with absolute stereocontrol. The reaction does not display nonlinear effects and therefore only one proline molecule is involved in the transition state. The reaction was also catalyzed with good selectivity by other proline derivatives. The Mannich products were converted into 3-amino alcohols and 2-aminobutane-1,4-diols with up to >99 % ee. The first one-pot, three-component, direct catalytic asymmetric cross-Mannich reactions between unmodified aldehydes, p-anisidine, and ethyl glyoxylate have been developed. The novel cross-Mannich reaction furnishes either enantiomer of unnatural alpha-amino acid derivatives in high yield and up to >99 % ee. The one-pot, three-component, direct catalytic asymmetric reactions were readily scaled up, operationally simple, and conductible in environmentally benign and wet solvents. The mechanism and stereochemistry of the proline-catalyzed, one-pot, three-component, asymmetric cross-Mannich reaction are also discussed.  相似文献   

5.
The novel, direct amino acid-catalyzed α-oxidation of ketones with iodosobenzene and N-sulfonyloxaziridines is presented. A screen of several synthetically common oxidants revealed that iodosobenzene and N-sulfonyloxaziridines act as electrophiles in the direct organocatalytic asymmetric α-hydroxylation of ketones. The direct proline-catalyzed asymmetric α-oxidation of ketones with iodosobenzene yielded the corresponding α-hydroxylated ketones with up to 77% ee. Furthermore, several amino acid derivatives catalyze the stereoselective α-oxidation of ketones with N-sulfonyloxaziridines. For example, the direct diamine-catalyzed enantioselective α-hydroxylation of ketones with N-sulfonyloxaziridines furnished the corresponding α-hydroxylated products in moderate yield with up to 63% ee.  相似文献   

6.
The proline-catalyzed Mannich addition of ketones to chalkogenazines is reported. Yields and enantioselectivities of the corresponding products were good to excellent, using different types of organocatalysts. Furthermore the immobilization of hydroxyproline into a readily synthesized polystyrene-copolymer was accomplished. The catalytic performance of this heterogeneous catalyst was successfully demonstrated in the discussed Mannich reaction.  相似文献   

7.
We report the first one-pot process for the asymmetric addition of allyl, methallyl, and propargyl groups to aldehydes and ketones using B-chlorodiisopinocampheylborane ((d)DIP-Cl) and indium metal. Under Barbier-type conditions, indium metal was used to generate allyl- and allenylindium intermediates, and subsequent reaction with (d)DIP-Cl successfully promoted the transfer of these groups to boron forming the corresponding chiral borane reagents. The newly formed borane reagents were reacted with aldehydes and ketones to produce the corresponding alcohol products in high yields and up to excellent enantioselectivity (98% ee). This method produced excellent enantioenriched secondary homoallylic alcohols from the allylation and methallylation of benzaldehyde. Using this method, the methallylation and cinnamylation of ketones afforded the highest enantioselectivities, while the propargylation of both aldehydes and ketones provided low enantiomeric excesses. In addition, this procedure provided the first synthesis of B-allenyldiisopinocampheylborane, which was characterized by (1)H and (11)B NMR spectroscopy. This is the first example of the direct synthesis of allylboranes that contained substitutions from the corresponding allyl bromide and indium, thereby expanding the utility of the DIP-Cl reagent. Hence, a general and straightforward route to these chiral organoborane reagents in one-pot has been developed along with the asymmetric Barbier-type allylation and propargylation of aldehyde and ketone substrates using these chiral organoborane reagents in subsequent coupling reactions.  相似文献   

8.
An anti-selective direct catalytic asymmetric aldol reaction of 2-hydroxyacetophenones with aldehydes is described. The reaction is catalyzed by a heteropolymetallic complex to afford anti-alpha,beta-dihydroxy ketones as the major diastereomer with excellent enantioselectivity. The use of 2-hydroxyacetophenones bearing electron-donating groups at the phenyl moiety enabled efficient transformation of the aldol products (alpha,beta-dihydroxy ketones) into the corresponding alpha,beta-dihydroxy ester derivatives via Baeyer-Villiger oxidation. A plausible reaction mechanism is also discussed based on the stereochemistry of the products.  相似文献   

9.
He Y  Lin M  Li Z  Liang X  Li G  Antilla JC 《Organic letters》2011,13(17):4490-4493
The direct asymmetric intramolecular aza-Friedel-Crafts reaction of N-aminoethylpyrroles with aldehydes catalyzed by a chiral phosphoric acid represents the first efficient method for the preparation of medicinally interesting chiral 1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazines with high yields and high enantioselectivities. This strategy has been shown to be quite general toward various aldehydes and pyrrole derivatives.  相似文献   

10.
《Tetrahedron》2006,62(2-3):357-364
The scope and limitations of the direct organocatalytic asymmetric α-aminomethylation of ketones are disclosed. The proline-catalyzed classical Mannich reactions between unmodified ketones, aqueous formaldehyde and aromatic amines furnished the desired Mannich bases in high yield with up to >99% ee. Moreover, methyl alkyl ketones were regioselectively α-aminomethylated at the methylene carbon affording the corresponding Mannich products with up to >99% ee. In addition, the proline-catalyzed one-pot three-component reaction between p-anisidine, aqueous formaldehyde and 4,4-dimethyl-2-cycloxehen-1-one furnished the corresponding bicyclic aza-Diels–Alder adduct with >99% ee.  相似文献   

11.
[reaction: see text] With this communication we extend the methodology of proline-catalyzed direct asymmetric aldol reactions to include alpha-unsubstituted aldehydes as acceptors. This important aldehyde class gives the corresponding aldols in 22-77% yield and up to 95% ee when the reactions are performed in pure acetone or in ketone/chloroform mixtures. On the basis of these results we have developed a concise new synthesis of (S)-ipsenol.  相似文献   

12.
A highly stereoselective direct aldol condensation of ketones to aromatic aldehydes was realized; the trichlorosilyl enolether generated in situ in the presence of tetrachlorosilane is activated by catalytic amounts of an enantiomerically pure biheteroaromatic phosphine oxide to react with aldehydes, coordinated as well as activated by the chiral cationic hypervalent silicon species. This Lewis acid-mediated Lewis base-catalyzed transformation allowed, starting from two carbonyl compounds, to directly synthesize β-hydroxy ketones generally with high anti stereoselectivity and up to 93% ee for the anti isomer.  相似文献   

13.
The growing importance of structurally diverse and functionalized enantiomerically pure unnatural amino acids in the design of drugs, including peptides, has stimulated the development of new synthetic methods. This study reports the challenging direct asymmetric alkylation of cyclic ketones with dehydroalanine derivatives via a conjugate addition reaction for the synthesis of enantiopure ketone-based α-unnatural amino acids. The key to success was the design of a bifunctional primary amine-thiourea catalyst that combines H-bond-directing activation and enamine catalysis. The simultaneous dual activation of the two relatively unreactive partners, confirmed by mass spectrometry studies, results in high reactivity while securing high levels of stereocontrol. A broad substrate scope is accompanied by versatile downstream chemical modifications. The mild reaction conditions and consistently excellent enantioselectivities (>95 % ee in most cases) render this protocol highly practical for the rapid construction of valuable noncanonical enantiopure α-amino-acid building blocks.  相似文献   

14.
Chiral α,α-diaryl ketones are structural motifs commonly present in bioactive molecules, and they are also valuable building blocks in synthetic organic chemistry. However, catalytic asymmetric synthesis of α,α-diaryl ketones bearing a tertiary stereogenic center remains largely unsolved. Herein, we report a catalytic de novo enantioselective synthesis of α,α-diaryl ketones from simple alkynes via chiral phosphoric acid (CPA) catalysis. A broad range of enolizable α,α-diaryl ketones are prepared in good yields and with excellent enantioselectivities. The described protocol also serves as an efficient deuteration method for the preparation of enantiomerically enriched deuterated α,α-diaryl ketones. Using the methodology reported, bioactive molecules, including one of the best-selling anti-breast cancer drugs, tamoxifen, are readily synthesized.  相似文献   

15.
Among the various versions of the aldol reaction, the enantioselective reaction between cyclic ketones and aldehydes constitutes a typical reaction model for the evaluation of novel organocatalysts. A multifunctional organocatalyst consisting of a prolinamide moiety, a gem diamine unit and a urea group was successfully employed in this asymmetric transformation. The products of the reaction between various ketones and aldehydes were obtained in high yields (up to 98%) with excellent diastereo- (up to >98:2 dr) and enantioselectivities (up to 99% ee).  相似文献   

16.
[reaction: see text] L-Proline-catalyzed direct asymmetric Mannich reactions of N-PMP protected alpha-imino ethyl glyoxylate with various alpha,alpha-disubstituted aldehydes affords quaternary beta-formyl alpha-amino acid derivatives with excellent yields and enantioselectivities. The Mannich products are further converted to the corresponding quaternary alpha- and beta-amino acids and beta-lactams.  相似文献   

17.
Zhu SF  Yang Y  Wang LX  Liu B  Zhou QL 《Organic letters》2005,7(12):2333-2335
[reaction: see text] A novel chiral monodentate spiro phenylphospholane ligand 4 was prepared from a readily accessible, enantiomerically pure 1,1'-spirobiindane-7,7'-diol in high yield. This ligand has proven to be efficient for Pd-catalyzed enantioselective allylation of aldehydes with allylic alcohols. Aromatic, heteroaromatic, and aliphatic aldehydes gave homoallylic alcohols in good enantioselectivities (up to 83% ee) and excellent anti diastereoselectivities (up to 99:1 dr).  相似文献   

18.
Two short and convergent routes have been devised for the preparation of enantiomerically pure acyclic epoxy vinyl sulfoxides. These substrates undergo highly regio- and stereoselective S(N)2' displacements with lithium cyanocuprates to give alpha'-alkylated, gamma-oxygenated Z alpha,beta-unsaturated sulfoxides in moderate to good yields and with good to excellent diastereoselectivities. The absolute configuration of the newly formed carbon-carbon bond is primarily controlled by the chiral sulfur atom, which in a nonreinforcing situation can override the intrinsic anti tendency of the vinyl oxirane moiety and forces the cuprate to undergo syn addition. The hydroxy vinyl sulfoxide functionality of the resulting adducts should allow for subsequent asymmetric transformations thus enhancing the synthetic usefulness of this methodology.  相似文献   

19.
The asymmetric direct aldol reactions of a wide scope of aldehydes with unmodified ketones in the presence of 20 mol%(S,S,S)-pyrrolidine-2-carboxylic acid (2'-hydroxyl-1',2'-diphenyl-ethyl)-amine (1) were performed in ionic liquids; aldol products with 91 to >99% ees for aromatic aldehydes and 99% ees for alphatic aldehydes were offered by the present procedure.  相似文献   

20.
[reaction: see text] Organocatalytic asymmetric Mannich reaction of protected amino ketones with imines in the presence of an L-proline-derived tetrazole catalyst afforded diamines with excellent yields and enantioselectivities of up to 99%. The amino ketone protecting group controlled the regioselectivity of the reaction providing access to chiral 1,2-diamines from azido ketones and 1,4-diamines from phthalimido ketones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号