首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanidinium-based ionic liquids   总被引:4,自引:0,他引:4  
Cyclic (subset=N+<, subset = imidazolidine 3 and 4, hexahydro-pyrimidine 7 and 8, tetrahydro-1,3,5-oxadiazine 12, and triazoline 15 and 16) and acyclic [(R2N)2C=N+<, 19] guanidinium-based salts were synthesized via the quaternization of guanidine derivatives with nitric or perchloric acid or with iodomethane followed by metathesis reaction with silver nitrate, silver perchlorate, or ammonium dinitroamide. The structure of 15d was confirmed by single-crystal X-ray analysis. Most of the salts exhibited low melting points and good thermal stabilities. Their densities range between 1.2 and 1.5 g/cm3. Standard molar enthalpies of formation were calculated from experimentally determined constant-volume combustion energies obtained using an oxygen bomb calorimeter.  相似文献   

2.
The alkylation reaction of 2-mercapto-1-methylimidazole 1a with iodoethane and chlorobutane produced S-alkylmethimazole halides 2a and 2b which were subjected to anion metathesis with two different metal salts (MA) to afford methimazole-based room-temperature ionic liquids 3a, 3b, and 3c in 82%, 85%, and 87% yields, respectively. S-Alkylation giving 2a and 2b suggests that methimazole reacts through the thione tautomer.  相似文献   

3.
Ionic liquids are salts that are liquid at or near room temperature. Their wide liquid range, good thermal stability, and very low vapor pressure make them attractive for numerous applications. The general approach to creating ionic liquids is to employ a large, unreactive, low symmetry cation with and an anion that largely controls the physical and chemical properties. The most common cations used in ionic liquids are N-alkylpyridinium and N,N′-dialkylimidazolium. Another very effective cation for the creation of ionic liquids is tetraalkylphosphonium, [PR1R2R3R4]+. The alkyl groups, Rn, generally are large and not all the same. The halide salts of several phosphonium cations are available as starting materials for metathesis reactions used to prepare ionic liquids. The large phosphonium cations can combine with relatively large anions to make viscous but free flowing liquids with formula mass greater than 1000 g mol−1. Some other more massive salts are waxes and glasses. The synthesis and the physical, chemical, and optical properties of phosphonium-ionic liquids having anions with a wide range of masses were measured and are reported here.  相似文献   

4.
A total of sixty-three choline derivative-based ionic liquids in the forms of chlorides, acesulfamates, and bis(trifluoromethylsulfonyl)imides have been prepared and their physical properties (density, viscosity, solubility, and thermal stability) have been determined. Thirteen of these salts are known chlorides: precursors to the 26 water-soluble acesulfamates, 12 acesulfamates only partially miscible with water, and 12 water-insoluble imides. The crystal structures for two of the chloride salts-(2-hydroxyethyl)dimethylundecyloxymethylammonium chloride and cyclododecyloxymethyl(2-hydroxyethyl)dimethylammonium chloride-were determined. The antimicrobial (cocci, rods, and fungi) activities of the new hydrophilic acesulfamate-based ILs were measured and 12 were found to be active. The alkoxymethyl(2-hydroxyethyl)dimethylammonium acesulfamates have been shown to be insect feeding deterrents and thus open up a new generation of synthetic deterrents based on ionic liquids. The alkoxymethyl(2-decanoyloxyethyl)dimethylammonium bis(trifluoromethylsulfonyl)imides have also been shown to act as fixatives for soft tissues and can furthermore be used as substitutes for formalin and also preservatives for blood.  相似文献   

5.
6.
Pyrrolidinium cation-based ionic liquids were synthesized, and their inhibition effects on methane hydrate formation were investigated. It was found that the ionic liquids shifted the hydrate equilibrium line to a lower temperature at a specific pressure, while simultaneously delaying gas hydrate formation.  相似文献   

7.
Ha SH  Mai NL  Koo YM 《Journal of chromatography. A》2010,1217(49):7638-7641
Microwave-assisted separation has been applied to recover ionic liquid (IL) from its aqueous solution as an efficient method with respect to time and energy compared to the conventional vacuum distillation. Hydrophilic ILs such as 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]), 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-ethyl-3-methylimidazolium methylsulfate ([Emim][MS]) could be recovered in 6 min from the mixture of ILs and water (1:1, w/w) under microwave irradiation at constant power of 10 W while it took at least 240 min to obtain ILs containing same water content (less than 0.5 wt%) by conventional vacuum oven at 363.15 K with 90 kPa of vacuum pressure. Energy consumptions per gram of evaporated water from the homogeneous mixture of hydrophilic ILs and water (1:1, w/w) by microwave-assisted separation were at least 52 times more efficient than those in conventional vacuum oven. It demonstrated that microwave-assisted separation could be used for complete recovery of ILs in sense of time and energy as well as relevant purity.  相似文献   

8.
The first examples of structurally characterised mixed-ligand metal-containing ionic liquids (ILs) are presented, synthesised by the use of different N-alkylimidazoles. The cations consist of two-coordinate silver(i) centres ligated by two different N-alkylimidazole ligands. It is shown that the resulting ionic liquids have lower melting points than the single ligand ILs.  相似文献   

9.
《Mendeleev Communications》2020,30(1):114-116
  1. Download : Download high-res image (64KB)
  2. Download : Download full-size image
  相似文献   

10.
Cooperativity in ionic liquids is investigated by means of static quantum chemical calculations. Larger clusters of the dimethylimidazolium cation paired with a chloride anion are calculated within density functional theory combined with gradient corrected functionals. Tests of the monomer unit show that density functional theory performs reasonably well. Linear chain and ring aggregates have been considered and geometries are found to be comparable with liquid phase structures. Cooperative effects occur when the total energy of the oligomer differs from a simple sum of monomer energies. Cooperative effects have been found in the structural motifs examined. A systematic study of linear chains of increasing length (up to nine monomer units) has shown that cooperativity plays a more important role than expected and is stronger than in water. The Cl...H distance of the chloride to the most acidic proton increases with an increasing number of monomer units. The average bond distance approaches 218.9 pm asymptotically. The dipole moment grows almost linearly and the dipole moment per monomer unit reaches the asymptotic value of 16.3 D. The charge on the chloride atoms decreases with an increasing chain length. In order to detect local hydrogen bonding in the clusters a new parametrization of the shared-electron number method is introduced. We find decreasing hydrogen bond energies with an increasing cluster size for both the first hydrogen bond to the most acidic proton and the average hydrogen bond.  相似文献   

11.
12.
Lewis base ionic liquids   总被引:4,自引:0,他引:4  
Ionic liquids which are (weak) Lewis bases have a number of interesting and useful properties different to those of traditional ionic liquids, including volatility and the possibility of being distillable in some cases, a base catalysis effect in others and enhancement of the acidity of dissolved acids.  相似文献   

13.
Mutually immiscible ionic liquids   总被引:1,自引:0,他引:1  
This work presents the novel discovery of room-temperature ionic liquids that are mutually immiscible, some of which are also immiscible with solvents as diverse as water and alkanes; an archetypal biphasic system is trihexyltetradecylphosphonium chloride with 1-alkyl-3-methylimidazolium chloride (where the alkyl group is shorter than hexyl).  相似文献   

14.
A number of imidazolium ionic liquids with bis(trifluoromethylsulfonyl)imide anion containing a ω-hydroxyalkyl substituent of different lengths in the cation (nС = 2–8) were synthesized. The properties of the obtained liquids were investigated by DSC, TGA, IR, and NMR spectroscopy. Their thermal stability was studied; melting points, viscosity, and volatility in vacuum were measured. The possibility of using synthesized ionic liquids as heat carriers under high vacuum conditions is demonstrated.  相似文献   

15.
Dicationic ionic liquids with bis(trifluoromethylsulfonyl)imide anions and dimethylimidazolic moieties linked by the polymeric siloxane chain in the cation structure have been synthesized. Thermal stability of the compounds synthesised was studied by TGA; glass transition temperatures, viscosities and volatility in vacuo were measured. Applicability of these ionic liquids as heat carriers under high dynamic vacuum conditions is shown.  相似文献   

16.
Triazolium-based energetic ionic liquids   总被引:1,自引:0,他引:1  
The energetic ionic liquids formed by the 1,2,4-triazolium cation family and dinitramide anion are investigated by ab initio quantum chemistry calculations, to address the following questions: How does substitution at the triazolium ring's nitrogen atoms affect its heat of formation, and its charge delocalization? What kind of ion dimer structures might exist? And, do deprotonation reactions occur, as a possible first step in the decomposition of these materials?  相似文献   

17.
Eight common imidazolium based ionic liquids have been successfully evaporated in ultra-high vacuum, their vapours analysed by line of sight mass spectrometry and their heats (enthalpy) of vapourisation determined. They were found to evaporate as ion pairs, with heats of vapourisation which depend primarily on the coulombic interactions within the liquid phase and the gas phase ion pair. An electrostatic model is presented relating the heats of vapourisation to the molar volumes of the ionic liquids.  相似文献   

18.
Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed “green solvents” is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. DOI 10.1002/tcr.201100036  相似文献   

19.
Reactivity of ionic liquids   总被引:2,自引:0,他引:2  
Ionic liquids are becoming widely used in synthetic organic chemistry and yet relatively little attention has been paid to the intrinsic reactivity of these low temperature molten salts. Clues to the non-innocent nature of many ionic liquids are contained in the reports of altered reactivity of dissolved substrates, unexpected catalytic activity and unforeseen by-product formation. In this review, we focus on the reactivity of ionic liquids, as opposed to reactivity in ionic liquids (although discussion of the latter is often included where it aids understanding of the former).  相似文献   

20.
Electrowetting of ionic liquids   总被引:1,自引:0,他引:1  
We have successfully demonstrated that imidazolium- and pyrrolidinium-based commercial room-temperature ionic liquids can electrowet (with a dc voltage) a smooth fluoropolymer (Teflon AF1600) surface. Qualitatively, the process is analogous to the electrowetting of aqueous electrolyte solutions: the contact angle versus voltage curve has a parabolic shape which saturates at larger voltages (positive or negative). On the other hand we observed several peculiarities: (i) the efficiency is significantly lower (by about an order of magnitude); (ii) the influence of the bulky cation is larger and the importance of the smaller anion is lesser, especially with respect to electrowetting saturation; (iii) there is an asymmetry in the saturation contact angles found for positive and negative voltages. The asymmetry may be correlated with the cation-anion asymmetry of the ionic liquids. The low efficiency may be caused by the presence of water and other impurities in these commercial materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号