首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manfred H Wagner 《Rheologica Acta》2014,53(10-11):765-777
A consistent model of the rheology of polymer melts and concentrated solutions is presented, based on the idea that the pressures exerted by a polymer chain on the walls of an anisotropic confinement are anisotropic (Doi and Edwards. The Theory of Polymer Dynamics, Oxford University Press, 1986). In a tube model with variable tube diameter, chain stretch and tube diameter reduction are related, and at deformation rates larger than the inverse Rouse time τ R, the chain is stretched and its confining tube becomes increasingly anisotropic. Tube diameter reduction leads to an interchain pressure in the lateral direction of the tube (Marrucci and Ianniruberto. Macromolecules 37:3934-3942, 2004). Chain stretch is balanced by interchain tube pressure in the lateral direction, which is proportional to the third power of stretch, and by a spring force in the longitudinal direction of the tube, which is linear in stretch. Analyzing elongational viscosity data of Huang et al. (Macromolecules 46:5026-5035, 2013a; ACS Macro Letters 2:741-744, 2013b) shows that dilution of polystyrene by oligomeric styrene does not change the relative interchain tube pressure. Based on this extended interchain pressure concept, scaling relations for linear viscoelasticity and elongational viscosity of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene are presented based exclusively on the relaxation modulus of a reference polymer melt, the volume fraction of polymer in the solution, and the time-molar-mass shift as well as the time-temperature shift caused by the reduction of the glass transition temperature T g of the polymer in a solution relative to T g of the melt.  相似文献   

2.
We present a differential constitutive model of stress relaxation in polydisperse linear polymer melts and solutions that contains contributions from reptation, contour-length fluctuations, and chain stretching. The predictions of the model during fast start-up and steady shear flows of polymer melts are in accord with experimental observations. Moreover, in accordance with reported experimental literature (Osaki et al. in J Polym Sci B Polym Phys 38:2043–2050, 2000), the model predicts, for a range of shear rates, two overshoots in shear stress during start-up of steady shear flows of bidisperse polymer melts having components with widely separated molar masses. Two overshoots result only when the stretch or Rouse relaxation time of the higher molar mass component is longer than the terminal relaxation time of the lower molar mass component. The “first overshoot” is the first to appear with increasing shear rate and occurs as a result of the stretching of longer chains. Transient stretching of the short chains is responsible for the early time second overshoot. The model predictions in steady and transitional extensional flows are also remarkable for both monodisperse and bidisperse polymer solutions. The computationally efficient differential model can be used to predict rheology of commercial polydisperse polymer melts and solutions.  相似文献   

3.
Recently, the tube diameter relaxation time in the evolution equation of the molecular stress function (MSF) model (Wagner et al., J Rheol 49: 1317–1327, 2005) with the interchain pressure effect (Marrucci and Ianniruberto, Macromolecules 37:3934–3942, 2004) included was shown to be equal to three times the Rouse time in the limit of small chain stretch. From this result, an advanced version of the MSF model was proposed, allowing modeling of the transient and steady-state elongational viscosity data of monodisperse polystyrene melts without using any nonlinear parameter, i.e., solely based on the linear viscoelastic characterization of the melts (Wagner and Rolón-Garrido 2009a, b). In this work, the same approach is extended to model experimental data in shear flow. The shear viscosity of two polybutadiene solutions (Ravindranath and Wang, J Rheol 52(3):681–695, 2008), of four styrene-butadiene random copolymer melts (Boukany et al., J Rheol 53(3):617–629, 2009), and of four polyisoprene melts (Auhl et al., J Rheol 52(3):801–835, 2008) as well as the shear viscosity and the first and second normal stress differences of a polystyrene melt (Schweizer et al., J Rheol 48(6):1345–1363, 2004), are analyzed. The capability of the MSF model with the interchain pressure effect included in the evolution equation of the chain stretch to model shear rheology on the basis of linear viscoelastic data alone is confirmed.  相似文献   

4.
We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the solvent has less than two Kuhn steps, e.g. is not a chain. The constitutive equation is based on a phenomenological tube-based model within the methodology of the molecular stress function approach. The nonlinear dynamics have been explained as a consequence of a constant thermal interchain pressure originating from the short polymer chains (e.g. the oligomers) on the wall of the tube containing the long chains. The nonlinear dynamics are uniquely defined by the Rouse time and the maximal extensibility of the long polymer chains. Both are linked to the entanglement length. The relation between the Rouse times and entanglements have been established based on published extensional experiments on nearly monodisperse polystyrene melts. The constitutive equation has shown agreement with the experimental startup of and steady extension data from Huang et al. (Macromolecules 46:5026–5035, 2013a) based on 285 and 545 kg/mol polystyrenes diluted in styrene oligomers containing 3.3 (1.92 kg/mol) and 7.3 (4.29 kg/mol) Kuhn steps.  相似文献   

5.
Orientation and stretch of entangled polymers under large step shear deformations were investigated through primitive chain network simulations. In the simulations, entangled polymer dynamics is described by 3D motion of entanglements, 1D sliding of monomers along the chain, and creation/destruction of entanglements described by hooking/unhooking with surrounding chains at chain ends. In addition to the conventionally proposed relaxation mechanisms that are reptation, contour length fluctuations, and constraint release (both thermal and convective), the simulations also account for force balance among entanglement strands converging to an entanglement node, and nodes also fluctuate in space. Nonlinear step strain data for monodisperse polystyrene melts (Ferri and Greco, Macromolecules, 37:5931, 2006) were quantitatively reproduced by using the same two molecular-weight-independent parameters already adopted by Masubuchi et al. (J Non-Newt Fluid Mech, 149:87, 2008) to fit linear viscoelastic data of several monodisperse polystyrene melts. Analysis of the orientation tensor and of the chain stretch ratio indicates that the segment orientation and stretch realized in the simulation are quantitatively described by a simple three-chain model (Marrucci et al., Macromol Symp, 158:57, 2000a).  相似文献   

6.
We develop a single segment differential tube model including interchain tube pressure effect (ITPE) [G. Marrucci, G. Ianniruberto, Interchain pressure effect in extensional flows of entangled polymers, Macromolecules 36 (2004) 3934–3942], able to describe the non-linear behaviour of entangled linear polymers. The model accounts for the effect of flow on the tube length and diameter. It is presented in two versions, depending on which tube dimension is assumed to deform affinely. The classical relaxation mechanisms, i.e., reptation, stretch dynamics, convective constraint release (CCR), as well as finite extensibility, are incorporated in a simple manner; hence the model allows an explicit comparison of the relative importance of various effects. A striking result is the insignificance of finite extensibility and the detrimental influence of CCR for moderately entangled systems when ITPE is taken into account. For highly entangled systems, CCR regains importance to avoid the well-known shear stress instability. The proposed model is able to make quantitative predictions of steady elongational and shear data for monodisperse melts, while transient values are less accurate but within experimental errors.  相似文献   

7.
The linear viscoelastic behavior of three well-entangled linear monodisperse polystyrene melts and their blends is investigated. The monodisperse melts are blended in a 1:1 weight ratio to obtain three polystyrene bidisperse blends for which the linear viscoelastic behavior is also measured. Special attention is paid to controlling sample size and solvent content, and checking for consistency in the high-frequency regime. We also attempt to estimate uncertainty quantitatively. The experimental results agree well with the discrete slip-link model, a robust mesoscopic theory that has been successful in predicting the rheology of flexible entangled polymer liquids and gels. Using recently developed analytic expressions for the relaxation modulus, predictions of the monodisperse samples are made. The parameters for the model are obtained from the low-frequency crossover of one experiment. Using this parameter set without adjustment, predictions over the fully accessible experimental frequency range are obtained for the monodisperse samples and their blends with very good agreement.  相似文献   

8.
We use small-angle neutron scattering to measure the molecular stretching in polystyrene melts undergoing steady elongational flow at large stretch rates. The radius of gyration of the central segment of a partly deuterated polystyrene molecule is, in the stretching direction, increasing with the steady stretch rate to a power of about 0.25. This value is about half of the exponent observed for the increase in stress value σ, in agreement with Gaussian behavior. Thus, finite chain extensibility does not seem to play an important role in the strongly non-linear extensional stress behavior exhibited by the linear polystyrene melt.  相似文献   

9.
We investigate the linear and non-linear rheological behavior in shear of a concentrated solution of ??dumbbell?? polystyrene with long linear backbone and dense short brushes at both ends and compare it with corresponding linear polymers. This type of dumbbells has never been rheologically characterized before. In linear viscoelasticity, the dumbbell polymers show significant differences with conventional linear polymers. In particular, the reptation relaxation of the dumbbell is strongly slowed down. Furthermore, the addition of the side chains increases the friction so that the dumbbell lies above the ?? 0 vs. number of entanglements relation of linear samples. Transient shear rheology experiments on weakly entangled solutions show a retardation of the chain stretch relaxation of the dumbbell by a factor 2.5 vs. a linear polymer with the same Rouse time. Additionally, a second peak in the transient viscosity is observed at high shear rates.  相似文献   

10.
11.
Motivated by recent data of Hassager and coworkers [A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Elongational viscosity of narrow molar mass distribution polystyrene, Macromolecules, 36 (2003) 5174–5179], we develop a new tube model describing the non-linear behaviour of entangled monodisperse linear polymers. Within the context of well established tube theories, the model accounts for the effect of flow on tube diameter, thus somehow picking up a long standing suggestion by Wagner and Schaeffer [M.H. Wagner, J. Schaeffer, Non-linear strain measures for general biaxial extension of polymer melts, J. Rheol., 32 (1992) 1–26] among others. Since tubes with a deformation dependent cross section are rather difficult to deal with, we here limit model development to an artificial two-dimensional situation. The simple 2D model has the advantage of illustrating the new physical assumptions more transparently, and it already proves to correctly predict most qualitative features typically shown by shear and elongational data in the non-linear range.  相似文献   

12.
The strain hardening of blends of polystyrene (PS) and ultra-high molecular weight polystyrene (UHMW-PS) in elongational flow is modeled by the molecular stress function (MSF) theory. Assuming that the ratios of strain energies stored in polydisperse and monodisperse polymers are identical for linear and nonlinear deformations, the value of the only non-linear parameter of the theory in extensional flows, the maximum molecular stress fmax, can be determined and is shown to be related to steady-state compliance Je0. Using only linear-viscoelastic data, the elongational viscosity of PS/UHMW-PS blends is consistently predicted by the MSF theory.  相似文献   

13.
Experimental data of two low-density polyethylene (LDPE) melts at 200°C for both shear flow (transient and steady shear viscosity as well as transient and steady first normal stress coefficient) and elongational flow (transient and steady-state elongational viscosity) as published by Pivokonsky et al. (J Non-Newtonian Fluid Mech 135:58–67, 2006) were analysed using the molecular stress function model for broadly distributed, randomly branched molecular structures. For quantitative modelling of melt rheology in both types of flow and in a very wide range of deformation rates, only three nonlinear viscoelastic material parameters are needed: Whilst the rotational parameter, a 2, and the structural parameter, β, are found to be equal for the two melts considered, the melts differ in the parameter describing maximum stretch of the polymer chains.  相似文献   

14.
We present experiments and theory on the diluted melt dynamics of monodisperse entangled polymers of linear, star and H-shaped architecture. Frequency-dependent rheological data on a series of progressively diluted linear, star and H-polymers are in good agreement with a refined tube-model theory that, for H-polymers, combines star polymer melt behaviour at high frequency, with linear polymer reptation behaviour at low frequencies. Taking into account the effect of dilution via some simple scaling relations, mild polydispersity and by incorporating the high frequency Rouse modes, we are able to model quantitatively the entire frequency range. This work suggests a novel rheological route to analysing long chain branching in polymer melts. Received: 6 April 2000/Accepted: 21 December 2000  相似文献   

15.
Tensile stress and flow-induced birefringence have been measured during uniaxial elongation at a constant strain rate of two polystyrene melts with narrow molecular weight distribution. For both melts, the stress- optical rule (SOR) is found to be fulfilled upto a critical stress of 2.7 MPa, independent of strain rate and temperature. Estimation of the Rouse times of the melts, from both the zero-shear viscosity and the dynamic-shear moduli at high frequency, shows that the violation of the SOR occurs when the strain rate multiplied by the Rouse time of the melt exceeds by approximately 3. The presented results indicate that in contrast to current predictions of molecular theories, the regime of extensional thinning observed by Bach et al. (2003) extends well beyond the onset of failure of the SOR, and therefore the onset of chain stretch in the non-Gaussian regime.
Clarisse LuapEmail: Phone: +41-1-632-68-89Fax: +41-1-632-1076
  相似文献   

16.
Capillary viscometry was performed on dilute non-Newtonian solutions of monodisperse polystyrene in theta solvents. The solvents, blends of low-molecular-weight polystyrene with styrene, had viscosities (ηs) that were varied from 0.22–27 Pa s. Data reduction of the dilute limit, [η]/[η0] vs. β = [η0sMγ?/RT (where γ? is shear rate) revealed a parametric dependence on ηs that has not before been reported and is not predicted by most molecular theories of polymer dynamics. It is suggested that an internal viscosity model can explain such a phenomenon.  相似文献   

17.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

18.
By generalizing the Doi-Edwards model to the Molecular Stress Function theory of Wagner and Schaeffer, the extensional viscosities of polyolefin melts in uniaxial, equibiaxial and planar constant strain-rate experiments starting from the isotropic state can be described quantitatively. While the strain hardening of four linear polymer melts (two high-density polyethylenes, a polystyrene and a polypropylene) can be accounted for by a tube diameter that decreases affinely with the average stretch, the two long-chain-branched polymer melts considered (a low-density polyethylene and a long-chain branched polypropylene) show enhanced strain hardening in extensional flows due to the presence of long-chain branches. This can be quantified by a molecular stress function, the square of which is quadratic in the average stretch and which follows from the junction fluctuation theory of Flory. The ultimate magnitude of the strain-hardening effect is governed by a maximum value of the molecular stress, which is specific to the polymer melt considered and which is the only free non-linear parameter of the theory. Received: 1 June 1999/Accepted: 24 November 1999  相似文献   

19.
Nonlinear shear and uniaxial extensional measurements on a series of graft-polystyrenes with varying average numbers and molar masses of grafted side chains are presented. Step-strain measurements are performed to evaluate the damping functions of the melts in shear. The damping functions show a decreasing dependence on strain with an increase in mass fraction of grafted side chains. Extensional viscosities of the melts of graft-polystyrenes exhibit a growing strain hardening with increasing average number of grafted side chains as long as the side branches have a sufficient molar mass to be entangled. Graft-polystyrenes with side arms below the critical molar mass M c for entanglements of linear polystyrene but above the entanglement molar mass M e of linear polystyrene (M e < M w,br < M c) still show a distinct strain hardening. With decreasing molar mass of the grafted side chains (M w,br < M e) the nonlinear-viscoelastic properties of the graft-polystyrene melts approach the behavior for a linear polystyrene with comparable polydispersity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
In the search for a workable mixing rule, use was made of experimental data for complex moduli of melts of narrow molar mass distribution polystyrenes and their homogeneous blends. In the course of this work two basic observations were made as to the nature of the relaxation time spectra of these blends:
  1. The relaxation strength (a product of the weight fraction and the plateau modulus) of a component of large molecules is reduced by the presence of shorter molecules, the latter molecules acting like ordinary diluent molecules even if their molar masses are larger thenM c .
  2. The relaxation time of a molecule (known from measurements on the respective monodisperse component) is considerably changed by the blending. The width of the distribution of relaxation times, as expected from the known composition of the blend, is significantly reduced.
For both processes approximate empirical equations could be found. It turned out that, after the application of the required modifications, the complex moduli of the components could successfully be added in order to obtain the complex moduli of the blend at circular frequencies characteristic for the flow and rubber transition regions. On the basis of these results one may expect that for the melt of any linear polymer the linear viscoelastic properties can be evaluated with reasonable accuracy from the knowledge of the molar mass distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号