首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neville elimination is a direct method for the solution of linear systems of equations with advantages for some classes of matrices and in the context of pivoting strategies for parallel implementations. The growth factor is an indicator of the numerical stability of an algorithm. In the literature, bounds for the growth factor of Neville elimination with some pivoting strategies have appeared. In this work, we determine all the matrices such that the minimal upper bound of the growth factor of Neville elimination with those pivoting strategies is reached.  相似文献   

2.
Several definitions of growth factors for Gaussian elimination are compared. Some new pivoting strategies, intermediate between partial pivoting and rook pivoting, are introduced. For random matrices, an approximation of the average normalized growth factor associated with several pivoting strategies is computed and analyzed. A stationary behavior of the expected growth factors of the new pivoting strategies is observed. Bounds for the growth factors of these pivoting strategies are provided. It is also shown that partial pivoting by columns produces small growth factors for matrices appearing in practical observations and for which the growth factors produced by partial pivoting are very large.  相似文献   

3.
A pivoting strategy of O(n) operations for the Neville elimination of n × n nonsingular sign regular matrices is introduced. Among other nice properties, it is proved that it preserves sign regularity. It is also shown its relationship with scaled partial pivoting strategies for Neville elimination.  相似文献   

4.
Pivoting strategies for Gaussian elimination leading to upper triangular matrices which are diagonally dominant by rows are studied. Forward error analysis of triangular systems whose coefficient matrices are diagonally dominant by rows is performed. We also obtain small bounds of the backward errors for the pivoting strategies mentioned above. Our examples of matrices include H-matrices and some generalizations of diagonally dominant matrices, and scaled partial pivoting for the 1-norm is an example of these pivoting strategies. In the case of an M-matrix, a pivoting strategy of computational complexity is proposed, which satisfies all the results of the paper. Received June 6, 1997 / Revised version received October 27, 1997  相似文献   

5.
Bar‐On  Ilan  Leoncini  Mauro 《Numerical Algorithms》1998,18(3-4):361-388
In this paper we present three different pivoting strategies for solving general tridiagonal systems of linear equations. The first strategy resembles the classical method of Gaussian elimination with no pivoting and is stable provided a simple and easily checkable condition is met. In the second strategy, the growth of the elements is monitored so as to ensure backward stability in most cases. Finally, the third strategy also uses the right‐hand side vector to make pivoting decisions and is proved to be unconditionally backward stable. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A matrixA issign-regular if, for each orderk, allk×k submatrices ofA have determinant with the same sign. In this paper, a pivoting strategy ofO(n) operations for the Gaussian elimination of linear systems whose coefficient matrices are sign-regular is proposed. Backward error analysis of this pivoting strategy is performed and small error bounds are obtained. Our results can also be applied to linear systems whose coefficient matrices have sign-regular inverses.  相似文献   

7.
Summary This note is concerned with the accuracy of the solution of nearly uncoupled Markov chains by a direct method based on the LU decomposition. It is shown that plain Gaussian elimination may fail in the presence of rounding errors. A modification of Gaussian elimination with diagonal pivoting and correction of small pivots is proposed and analyzed. It is shown that the accuracy of the solution is affected by two condition numbers associated with aggregation and the coupling respectively.This work was supported in part by the Air Force Office of Sponsored Research under Contract AFOSR-87-0188  相似文献   

8.
The problem of solving linear equations with a Toeplitz matrix appears in many applications. Often is positive definite but ill-conditioned with many small eigenvalues. In this case fast and superfast algorithms may show a very poor behavior or even break down. In recent papers the transformation of a Toeplitz matrix into a Cauchy-type matrix is proposed. The resulting new linear equations can be solved in operations using standard pivoting strategies which leads to very stable fast methods also for ill-conditioned systems. The basic tool is the formulation of Gaussian elimination for matrices with low displacement rank. In this paper, we will transform a Hermitian Toeplitz matrix into a Cauchy-type matrix by applying the Fourier transform. We will prove some useful properties of and formulate a symmetric Gaussian elimination algorithm for positive definite . Using the symmetry and persymmetry of we can reduce the total costs of this algorithm compared with unsymmetric Gaussian elimination. For complex Hermitian , the complexity of the new algorithm is then nearly the same as for the Schur algorithm. Furthermore, it is possible to include some strategies for ill-conditioned positive definite matrices that are well-known in optimization. Numerical examples show that this new algorithm is fast and reliable. Received March 24, 1995 / Revised version received December 13, 1995  相似文献   

9.
Summary Presented is a realistic, elementwise analysis for the rounding errors of a generalization of Gauss elimination for solving the linear best least squares problem without pivoting. The bounds are suitable to determine the class of well-posed problems to the given method. A mixed error analysis is given and then the effects of errors in the input data are studied. Numerical examples demonstrate the efficiency.
  相似文献   

10.
In this paper we develop a new approach for detecting if specific D-optimal designs exist embedded in Sylvester-Hadamard matrices. Specifically, we investigate the existence of the D-optimal designs of orders 5, 6, 7 and 8. The problem is motivated to explaining why specific values appear as pivot elements when Gaussian elimination with complete pivoting is applied to Hadamard matrices. Using this method and a complete search algorithm we explain, for the first time, the appearance of concrete pivot values for equivalence classes of Hadamard matrices of orders n = 12, 16 and 20.  相似文献   

11.
It is well known that some pivoting strategies are backward stable for Gauss elimination but are not backward stable for Gauss–Jordan elimination (GJE) when these procedures are used to solve a linear system Ax=b. We analyse the simultaneous backward stability for Gauss and GJE of several pivoting strategies, including a pivoting strategy which we call double partial pivoting. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A unified theory for generalized interpolation, as developed by Mühlbach, and classical polynomial interpolation is discussed. A fundamental theorem for generalized linear iterative interpolation is given and used to derive generalizations of the classical formulae due to Neville, Aitken and Lagrange. Using Mühlbach's definition of generalized divided differences, Newton's generalized interpolation formula, including an expression for the error term, is derived as a pure identity.  相似文献   

13.
The rank-one modification algorithm of theLDM t factorization was given by Bennett [1]. His method, however, could break down even when the matrix is nonsingular and well-conditioned. We introduce a pivoting strategy for avoiding possible break-down as well as for suppressing error growth in the modification process. The method is based on a symbolic formula of the rank-one modification of the factorization of a possibly singular nonsymmetric matrix. A new symbolic formula is also obtained for the inverses of the factor matrices. Repeated application of our method produces theLDM t-like product form factorization of a matrix. A numerical example is given to illustrate our pivoting method. An incomplete factorization algorithm is also introduced for updating positive definite matrix useful in quasi-Newton methods, in which the Fletcher and Powell algorithm [2] and the Gill, Murray and Saunders algorithm [4] are usually used.This paper is presented at the Japan SIAM Annual Meeting held at University of Tokyo, Japan, October 7–9, 1991.  相似文献   

14.
In this paper we present two new algorithmic variants to compute the Neville elimination, with and without pivoting, which improve data locality and cast most of the computations in terms of high-performance Level 3 BLAS. The experimental evaluation on a state-of-the-art multi-core processor demonstrates that the new blocked algorithms exhibit a much higher degree of concurrency and better cache usage, yielding higher performance while offering numerical accuracy akin to that of the traditional columnwise variant in most cases.  相似文献   

15.
Let A be a matrix whose sparsity pattern is a tree with maximal degree dmax. We show that if the columns of A are ordered using minimum degree on |A|+|A|, then factoring A using a sparse LU with partial pivoting algorithm generates only O(dmaxn) fill, requires only O(dmaxn) operations, and is much more stable than LU with partial pivoting on a general matrix. We also propose an even more efficient and just-as-stable algorithm called sibling-dominant pivoting. This algorithm is a strict partial pivoting algorithm that modifies the column preordering locally to minimize fill and work. It leads to only O(n) work and fill. More conventional column pre-ordering methods that are based (usually implicitly) on the sparsity pattern of |A||A| are not as efficient as the approaches that we propose in this paper.  相似文献   

16.
17.
The elimination tree plays an important role in many aspects of sparse matrix factorization. The height of the elimination tree presents a rough, but usually effective, measure of the time needed to perform parallel elimination. Finding orderings that produce low elimination is therefore important. As the problem of finding minimum height elimination tree orderings is NP-hard, it is interesting to concentrate on limited classes of graphs and find minimum height elimination trees for these efficiently. In this paper, we use clique trees to find an efficient algorithm for interval graphs which make an important subclass of chordal graphs. We first illustrate this method through an algorithm that finds minimum height elimination for chordal graphs. This algorithm, although of exponential time complexity, is conceptionally simple and leads to a polynomial-time algorithm for finding minimum height elimination trees for interval graphs.This work was supported by grants from the Norwegian Research Council.  相似文献   

18.
Neville elimination is an elimination procedure alternative to Gaussian elimination. It is very useful when dealing with totally positive matrices, for which nice stability results are known. Here we include examples, most of them test matrices used in MATLAB which are not totally positive matrices, where Neville elimination outperforms Gaussian elimination.  相似文献   

19.
Let {q} j =0n–1 be a family of polynomials that satisfy a three-term recurrence relation and let {t k } k =1n be a set of distinct nodes. Define the Vandermonde-like matrixW n =[w jk ] k,j =1n ,w jk =q j–1(t k ). We describe a fast algorithm for computing the elements of the inverse ofW n inO(n 2) arithmetic operations. Our algorithm generalizes a scheme presented by Traub [22] for fast inversion of Vandermonde matrices. Numerical examples show that our scheme often yields higher accuracy than the LINPACK subroutine SGEDI for inverting a general matrix. SGEDI uses Gaussian elimination with partial pivoting and requiresO(n 3) arithmetic operations.Dedicated to Gene H. Golub on his 60th birthdayResearch supported by NSF grant DMS-9002884.  相似文献   

20.
Summary The standard perturbation theory for linear equations states that nearly uncoupled Markov chains (NUMCs) are very sensitive to small changes in the elements. Indeed, some algorithms, such as standard Gaussian elimination, will obtain poor results for such problems. A structured perturbation theory is given that shows that NUMCs usually lead to well conditioned problems. It is shown that with appropriate stopping, criteria, iterative aggregation/disaggregation algorithms will achieve these structured error bounds. A variant of Gaussian elimination due to Grassman, Taksar and Heyman was recently shown by O'Cinneide to achieve such bounds.Supported by the National Science Foundation under grant CCR-9000526 and its renewal, grant CCR-9201692. This research was done in part, during the author's visit to the Institute for Mathematics and its Applications, 514 Vincent Hall, 206 Church St. S.E., University of Minnesota, Minneapolis, MN 55455, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号