首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The paper examines scalar advection caused by a point–vortex pair encountering a fixed point vortex in a uniform flow. The interaction produces two types of vortex motion. First is unbounded as the pair moves unrestrictedly after encountering the fixed vortex. The scalar exchanging between the pair's bubble and fixed vortex's neighbourhood is numerically estimated. Second is bounded as the pair's vortices periodically oscillate about the fixed vortex. The pair's periodic motion perturbs scalar motion causing a portion of scalar trajectories to manifest chaotic behaviour. We analyse scalar transport using Poincaré sections, which reveal regular and chaotic transport regions.  相似文献   

2.
The movement of a pair of point vortices with arbitrary intensities, embedded in a nonstationary shear and rotational flow, is studied. The expression for the vorticity center is shown to be reduced to a Riccati equation. In the particular case of harmonic oscillations, parametric resonance, which results in unbounded motion of the vortex pair, is found and analyzed. Using the fast oscillation averaging, an analytical estimate for the main zone in the parametric space is obtained. With the help of numerical calculations, the reliability of the estimate is asserted and a family of the minor zones is obtained.  相似文献   

3.
This paper analyzes the time averaged flow structure of a reacting jet in cross flow (RJICF), emphasizing the structure of the counter-rotating vortex pair (CVP) by using simultaneous tomographic particle image velocimetry (TPIV) and hydroxyl radical planar laser induced fluorescence (OH-PLIF). It was performed to determine the extent to which heat release, and the associated effects of gas expansion and baroclinic vorticity production, impact the structure of the CVP. These results show the clear presence of a CVP in the time averaged flow field, whose trajectory lies below the jet centerline on either side of the centerplane. Consistent with other measurements of high momentum flux ratio JICF in nonreacting flows, there is significant asymmetry in strength of the two vortex cores. The strength and structure of the CVP was quantified with vorticity and swirling strength (λci), showing that some regions of the flow with high shear are not necessarily accompanied by large scale bulk flow rotation and vice-versa. The OH PLIF measurement allows for correlation of the flame position with the dominant vortical structures, showing that the leeward flame branch lies slightly above, as well as, in the region between the CVP cores.  相似文献   

4.
Small scale clustering of inertial particles and relative velocity of particle pairs have been fully characterized for statistically steady homogeneous isotropic flows. Depending on the particle Stokes relaxation time, the spatial distribution of the disperse phase results in a multi-scale manifold characterized by local particle concentration and voids and, because of finite inertia, the two nearby particles have high probability to exhibit large relative velocities. Both effects might explain the speed-up of particle collision rate in turbulent flows. Recently it has been shown that the large scale geometry of the flow plays a crucial role in organizing small scale particle clusters. For instance, a mean shear preferentially orients particle patterns. In this case, depending on the Stokes time, anisotropic clustering may occur even in the inertial range of scales where the turbulent fluctuations which drive the particles have already recovered isotropy. Here we consider the statistics of particle pair relative velocity in the homogeneous shear flow, the prototypical flow which manifests anisotropic clustering at small scales. We show that the mean shear, by imprinting anisotropy on the large scale velocity fluctuations, dramatically affects the particle relative velocity distribution even in the range of small scales where the anisotropic mechanisms of turbulent kinetic energy production are sub-dominant with respect to the inertial energy transfer which drives the carrier fluid velocity towards isotropy. We find that the particles’ populations which manifest strong anisotropy in their relative velocities are the same which exhibit small scale clustering. In contrast to any Kolmogorov-like picture of turbulent transport these phenomena may persist even below the smallest dissipative scales where the residual level of anisotropy may eventually blow-up. The observed anisotropy of particle relative velocity and spatial configuration is suggested to influence the directionality of the collision probability, as inferred on the basis of the so-called “ghost collision” model.  相似文献   

5.
Qing-Bao Ren  Meng-Bo Luo 《Physics letters. A》2013,377(31-33):1966-1969
We study the dynamics of a two-dimensional vortex system in a strong square pinning array at the second matching field. Two kinds of depinning behaviors, a continuous depinning transition at weak pinning and a discontinuous one at strong pinning, are found. We show that the two different kinds of vortex depinning transitions can be identified in transport as a function of the pinning strength and temperature. Moreover, interstitial vortex state can be probed from the transport properties of vortices.  相似文献   

6.
In this work, two dimensional laminar flow of different nanofluids flow inside a triangular duct with the existence of vortex generator is numerically investigated. The governing equations of mass, momentum and energy were solved using the finite volume method (FVM). The effects of type of the nanoparticles, particle concentrations, and Reynolds number on the heat transfer coefficient and pressure drop of nanofluids are examined. Reynolds number is ranged from 100 to 800. A constant surface temperature is assumed to be the thermal condition for the upper and lower heated walls. In the present work, three nanofluids are examined which are Al2O3, CuO and SiO2 suspended in the base fluid of ethylene glycol with nanoparticles concentrations ranged from 1 to 6%. The results show that for the case of SiO2–EG, at ? = 6% and Re = 800, it is found that the average Nusselt number is about 50.0% higher than the case of Re = 100.  相似文献   

7.
邓真渝  章林溪 《物理学报》2015,64(16):168201-168201
采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.  相似文献   

8.
Fluid particle advection in the vicinity of the Föppl vortex system is considered. Due to periodic motion of vortices about the Föppl equilibrium, fluid particles within the vortex atmosphere, the fluid region with a velocity field being induced by the vortices, can move chaotic in the sense of exponential divergence of near trajectories. This chaotic motion leads to the vortex atmosphere particles to be carried away from the atmosphere to the exterior flow. In this Letter, the part of the carried away fluid particles is numerically assessed and the dynamics of the fluid release from the vortex atmosphere is demonstrated.  相似文献   

9.
We theoretically and experimentally investigate the beam-spreading of a vortex beam propagating in a turbulent atmosphere. It is found that the vortex beam is less affected by turbulence than a non-vortex one. The topological charge of the vortex beam on propagation has also been investigated experimentally. It is shown that the topological charge of vortex beam will exhibit fluctuating behavior as the beam propagates through a turbulent atmosphere.  相似文献   

10.
By using space-harmonic analysis method, the characteristics of the vibrational power flow propagation in an infinite periodic ring-stiffened cylindrical shell immersed in water are studied. The harmonic motion of the shell and the sound pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively, and four kinds of the rings’ forces and moments are considered. Along the shell axial direction, the propagation of the power flow carried by different internal forces (moments) of the shell wall can be obtained, thus the total power flow in the shell wall and the ratios of the component power flow carried by different shell internal forces (moments) to the total power flow are also studied. It is found that characteristics of the vibrational power flow propagation vary with different circumferential modes order and different frequencies. Moreover, the presence of the stiffeners and structural damping will greatly influence the results.  相似文献   

11.
涡流管内可压缩气体的强旋转流动是涡流管能量分离的根本原因和驱动力,因而涡流管内流场研究是揭示涡流管能量分离物理机制的首要关键问题。由于涡流管内可压缩气体的三维强旋转湍流流动,实验测量中存在诸多问题,而CFD数值模拟技术对此具有很大的优势。文中以涡流管内部流场为研究对象,建立了涡流管计算域模型并进行网格划分,讨论了边界条件、湍流模型以及线性方程组求解策略等问题,对不同冷气流率下的涡流管内三维强旋流流场结构特性进行数值模拟,获得了不同冷气流率下的旋转运动、轴向运动、径向运动和循环流的分布特性。研究表明Realizableκ-ε湍流模型能够充分反映强旋流动特点,数值模拟结果与文献中实验值基本吻合。  相似文献   

12.
Hydrodynamic cavitation in a Venturi tube produces luminescence, and the luminescence intensity reaches a maximum at a certain cavitation number, which is defined by upstream pressure, downstream pressure, and vapor pressure. The luminescence intensity of hydrodynamic cavitation can be enhanced by optimizing the downstream pressure at a constant upstream pressure condition. However, the reason why the luminescence intensity increases and then decreases with an increase in the downstream pressure remains unclear. In the present study, to clarify the mechanism of the change in the luminescence intensity with cavitation number, the luminescence produced by the hydrodynamic cavitation in a Venturi tube was measured, and the hydrodynamic cavitation was precisely observed using high-speed photography. The sound velocity in the cavitating flow field, which affects the aggressive intensity of the cavitation, was evaluated. The collapse of vortex cavitation was found to be closely related to the luminescence intensity of the hydrodynamic cavitation. A method to estimate the luminescence intensity of the hydrodynamic cavitation considering the sound velocity was developed, and it was demonstrated that the estimated luminescence intensity agrees well with the measured luminescence intensity.  相似文献   

13.
A model is developed based on the time-related thermal diffusion equations to investigate the effects of twodimensional shear flow on the stability of a crystal interface in the supercooled melt of a pure substance. Similar to the three-dimensional shear flow as described in our previous paper, the two-dimensional shear flow can also be found to reduce the growth rate of perturbation amplitude. However, compared with the case of the Laplace equation for a steady-state thermal diffusion field, due to the existence of time partial derivatives of the temperature fields in the diffusion equation the absolute value of the gradients of the temperature fields increases, therefore destabilizing the interface. The circular interface is more unstable than in the case of Laplace equation without time partial derivatives. The critical stability radius of the crystal interface increases with shearing rate increasing. The stability effect of shear flow decreases remarkably with the increase of melt undercooling.  相似文献   

14.
把剪切流对湍流抑制的解析理论应用于同时包含静态剪切流和周期交变剪切流的情况。所得到的结果表明:当两者单独存在时对湍流有定量上大体相同的抑制效应;当两者同时存在时对湍流的抑制效应不仅不是简单的迭加,反而在很大的区域上呈现互相削弱的趋势,特别是这种互斥性在两种剪切流强度相等时为最大。这与Maeyama等人的数值模拟结果相符合-。采用的渐近理论平均法表明导致两种剪切流在抑制湍流上不对等是由交变剪切流与它所诱发的交变相对位移之间的耦合所造成。  相似文献   

15.
A model is developed based on the time-related thermal diffusion equations to investigate the effects of twodimensional shear flow on the stability of a crystal interface in the supercooled melt of a pure substance.Similar to the three-dimensional shear flow as described in our previous paper,the two-dimensional shear flow can also be found to reduce the growth rate of perturbation amplitude.However,compared with the case of the Laplace equation for a steady-state thermal diffusion field,due to the existence of time partial derivatives of the temperature fields in the diffusion equation the absolute value of the gradients of the temperature fields increases,therefore destabilizing the interface.The circular interface is more unstable than in the case of Laplace equation without time partial derivatives.The critical stability radius of the crystal interface increases with shearing rate increasing.The stability effect of shear flow decreases remarkably with the increase of melt undercooling.  相似文献   

16.
High-energy heavy-ion lithography is a powerful tool for tuning both structural and electromagnetic properties of high temperature superconductors by inducing nanometer scale defects confined in micron scale patterns. We show how the vortex dynamics in YBCO thin films patterned by heavy-ion lithography can be controlled and potentially exploited for device applications. Both local critical temperature and local critical currents are effectively tailored by the imposed irradiation geometry. The direct visualization of the real-time dynamics of the magnetic pattern is achieved by the magneto-optical imaging technique, while confined vortex flow is revealed by the simultaneous measurement of the electrical resistance both along and perpendicular (Hall resistance) to the direction of the applied current. It is shown that, for microchannel arrays inclined with respect to the transport current flow, the direction of vortex motion is solely determined by the imposed irradiation pattern geometry, in a well-defined temperature range, for a given applied current.  相似文献   

17.
Akira Satoh 《Molecular physics》2013,111(18):2137-2149
We have developed the basic equation of the orientational distribution function of oblate spheroidal hematite particles with rotational Brownian motion in a simple shear flow under an applied magnetic field. An oblate spheroidal hematite particle has an important characteristic in that it is magnetized in a direction normal to the particle axis. Since a dilute dispersion is addressed in the present study, we have taken into account only the friction force (torque) whilst neglecting the hydrodynamic interactions among the particles. This basic equation has been solved numerically in order that we may investigate the dependence of the orientational distribution on the magnetic field strength, shear rate and rotational Brownian motion and the relationship between the orientational distribution and the transport coefficients such as viscosity and diffusion coefficient. We found that if the effect of the magnetic field is more dominant, the particle inclines in such a way that the oblate surface aligns in the magnetic field direction. If the Peclet number increases and the effect of the shear flow becomes more dominant, the particle inclines such that the oblate surface tilts in the shear flow direction. The viscosity due to the magnetic torque is shown to increase as the magnetic field increases, since the magnetic torque due to the applied magnetic field becomes the more dominant effect. Moreover, the viscosity increase is shown to be more significant for a larger aspect ratio or for a more oblate hematite particle. We have applied the analysis to the problem of particle sedimentation under gravity in the presence of a magnetic field applied in the sedimentation direction. The particles are found to sediment with the oblate surface aligning more significantly in the sedimentation direction as the applied magnetic field strength increases.  相似文献   

18.
曹斌  林鑫  王猛  黄卫东 《中国物理 B》2012,21(8):86401-086401
A model is developed based on the time-related thermal diffusion equations to investigate the effects of two-dimensional shear flow on the stability of a crystal interface in the supercooled melt of pure substance. Similar to the three-dimensional shear flow as described in our previous paper, the two-dimensional shear flow can also be found to reduce the growth rate of perturbation amplitude. However, compared with the case of Laplace equation for steady state thermal diffusion field, due to the existence of time partial derivatives of the temperature fields in diffusion equation the absolute value of the gradients of the temperature fields increases, therefore destabilizing the interface. The circular interface is more unstable than in the case of Laplace equation without time partial derivatives. The critical stability radius of the crystal interface increases with shearing rate increasing. The stability effect of shear flow decreases remarkably with the increase of melt undercooling.  相似文献   

19.
A numerical simulation of the Charney-Obukhov equation modified by the presence of a sheared zonal flow is carried out. The zonal flow is assumed to propagate longitudinally and is sheared along the meridians. It is shown that owing to the nonlinear interaction of the sheared zonal flow with the initially given disturbances the energy of the zonal flow is accumulating into the formations which are broken into several pieces. As a result new solitary vortex structures arise to produce the structural turbulence  相似文献   

20.
J. Yan  J.X. Liu  X. Zhu 《Applied Acoustics》2008,69(8):681-690
A submerged cylindrical shell reinforced by supports of rings and bulkheads is the primary structure of submarine, torpedo and all kinds of submerged aircrafts, so it is significant to study its characteristics of structure-borne sound. By means of periodic structure theory, the input power flow from a cosine harmonic line force into a submerged infinite cylindrical shell, reinforced by doubly periodic supports of rings and bulkheads, is studied analytically. The harmonic motion of the shell and the sound pressure field in the fluid are described by Flügge shell equations and Helmholtz equation, respectively. Since the fluid radical velocity and the shell radical velocity must be equal at the interface of the outer shell wall and the fluid, the motion equations of this coupled system are obtained. Both four kinds of forces (moments) between rings and shell and four kinds of forces (moments) between bulkheads and shell are considered. The solution is obtained in series form by expanding the system responses in terms of the space harmonics of the spacings of both stiffeners and bulkheads. The input vibrational power flow into the structure is obtained and the influences of different structural parameters on the results are analyzed. The analytic model is close to engineering practice, and it will give some guidelines for noise reduction of this kind of shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号