首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study the mutation operation of the differential evolution algorithm. In particular, we study the effect of the scaling parameter of the differential vector in mutation. We derive the probability density function of points generated by mutation and thereby identify some drawbacks of the scaling parameter. We also visualize the drawbacks using simulation. We then propose a crossover rule, called the preferential crossover rule, to reduce the drawbacks. The preferential crossover rule uses points from an auxiliary population set. We also introduce a variable scaling parameter in mutation. Motivations for these changes are provided. A numerical study is carried out using 50 test problems, many of which are inspired by practical applications. Numerical results suggest that the proposed modification reduces the number of function evaluations and cpu time considerably.  相似文献   

2.
In this paper we derive the probability distribution of trial points in the differential evolution (de) algorithm, in particular the probability distribution of points generated by mutation. We propose a point generation scheme that uses an approximation to this distribution. The scheme can dispense with the differential vector used in the mutation of de. We propose a de algorithm that replaces the differential based mutation scheme with a probability distribution based point generation scheme. We also propose a de algorithm that uses a probabilistic combination of the point generation by the probability distribution and the point generation by mutation. A numerical study is carried out using a set of 50 test problems, many of which are inspired by practical applications. Numerical results suggest that the new algorithms are superior to the original version both in terms of the number of function evaluations and cpu times.  相似文献   

3.
A dynamic clustering based differential evolution algorithm (CDE) for global optimization is proposed to improve the performance of the differential evolution (DE) algorithm. With population evolution, CDE algorithm gradually changes from exploring promising areas at the early stages to exploiting solution with high precision at the later stages. Experiments on 28 benchmark problems, including 13 high dimensional functions, show that the new method is able to find near optimal solutions efficiently. Compared with other existing algorithms, CDE improves solution accuracy with less computational effort.  相似文献   

4.
Differential evolution algorithms using hybrid mutation   总被引:2,自引:0,他引:2  
Differential evolution (DE) has gained a lot of attention from the global optimization research community. It has proved to be a very robust algorithm for solving non-differentiable and non-convex global optimization problems. In this paper, we propose some modifications to the original algorithm. Specifically, we use the attraction-repulsion concept of electromagnetism-like (EM) algorithm to boost the mutation operation of the original differential evolution. We carried out a numerical study using a set of 50 test problems, many of which are inspired by practical applications. Results presented show the potential of this new approach.  相似文献   

5.
The optimization of systems which are described by ordinary differential equations (ODEs) is often complicated by the presence of nonconvexities. A deterministic spatial branch and bound global optimization algorithm is presented in this paper for systems with ODEs in the constraints. Upper bounds for the global optimum are produced using the sequential approach for the solution of the dynamic optimization problem. The required convex relaxation of the algebraic functions is carried out using well-known global optimization techniques. A convex relaxation of the time dependent information is obtained using the concept of differential inequalities in order to construct bounds on the space of solutions of parameter dependent ODEs as well as on their second-order sensitivities. This information is then incorporated in the convex lower bounding NLP problem. The global optimization algorithm is illustrated by applying it to four case studies. These include parameter estimation problems and simple optimal control problems. The application of different underestimation schemes and branching strategies is discussed.  相似文献   

6.
Differential evolution (DE) is generally considered as a reliable, accurate, robust and fast optimization technique. DE has been successfully applied to solve a wide range of numerical optimization problems. However, the user is required to set the values of the control parameters of DE for each problem. Such parameter tuning is a time consuming task. In this paper, a self-adaptive DE (SDE) algorithm which eliminates the need for manual tuning of control parameters is empirically analyzed. The performance of SDE is investigated and compared with other well-known approaches. The experiments conducted show that SDE generally outperform other DE algorithms in all the benchmark functions. Moreover, the performance of SDE using the ring neighborhood topology is investigated.  相似文献   

7.
8.
In this paper, an ensemble of discrete differential evolution algorithms with parallel populations is presented. In a single populated discrete differential evolution (DDE) algorithm, the destruction and construction (DC) procedure is employed to generate the mutant population whereas the trial population is obtained through a crossover operator. The performance of the DDE algorithm is substantially affected by the parameters of DC procedure as well as the choice of crossover operator. In order to enable the DDE algorithm to make use of different parameter values and crossover operators simultaneously, we propose an ensemble of DDE (eDDE) algorithms where each parameter set and crossover operator is assigned to one of the parallel populations. Each parallel parent population does not only compete with offspring population generated by its own population but also the offspring populations generated by all other parallel populations which use different parameter settings and crossover operators. As an application area, the well-known generalized traveling salesman problem (GTSP) is chosen, where the set of nodes is divided into clusters so that the objective is to find a tour with minimum cost passing through exactly one node from each cluster. The experimental results show that none of the single populated variants was effective in solving all the GTSP instances whereas the eDDE performed substantially better than the single populated variants on a set of problem instances. Furthermore, through the experimental analysis of results, the performance of the eDDE algorithm is also compared against the best performing algorithms from the literature. Ultimately, all of the best known averaged solutions for larger instances are further improved by the eDDE algorithm.  相似文献   

9.
本文利用经典的角度量的方法,研究了由R-N导数定义的广义微分算子L的谱性质,这种性质以前尚未被研究过。文章共分三部分:(一)给出广义微分算子L的定义,并介绍了文中涉及的一些概念;(二)给出文中要用到的一些已知定理;(三)通过讨论角度变量θ(x,λ),得出算子L的一些谱性质.  相似文献   

10.
Generalized geometric programming (GGP) problems occur frequently in engineering design and management. Some exponential-based decomposition methods have been developed for solving global optimization of GGP problems. However, the use of logarithmic/exponential transformations restricts these methods to handle the problems with strictly positive variables. This paper proposes a technique for treating non-positive variables with integer powers in GGP problems. By means of variable transformation, the GGP problem with non-positive variables can be equivalently solved with another one having positive variables. In addition, we present some computationally efficient convexification rules for signomial terms to enhance the efficiency of the optimization approach. Numerical examples are presented to demonstrate the usefulness of the proposed method in GGP problems with non-positive variables.  相似文献   

11.
Differential evolution for sequencing and scheduling optimization   总被引:2,自引:0,他引:2  
This paper presents a stochastic method based on the differential evolution (DE) algorithm to address a wide range of sequencing and scheduling optimization problems. DE is a simple yet effective adaptive scheme developed for global optimization over continuous spaces. In spite of its simplicity and effectiveness the application of DE on combinatorial optimization problems with discrete decision variables is still unusual. A novel solution encoding mechanism is introduced for handling discrete variables in the context of DE and its performance is evaluated over a plethora of public benchmarks problems for three well-known NP-hard scheduling problems. Extended comparisons with the well-known random-keys encoding scheme showed a substantially higher performance for the proposed. Furthermore, a simple slight modification in the acceptance rule of the original DE algorithm is introduced resulting to a more robust optimizer over discrete spaces than the original DE.  相似文献   

12.
In this article, a novel numerical method is proposed for nonlinear partial differential equations with space- and time-fractional derivatives. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor's formula. The fractional derivatives are considered in the Caputo sense. Several illustrative examples are given to demonstrate the effectiveness of the present method. Results obtained using the scheme presented here agree well with the analytical solutions and the numerical results presented elsewhere. Results also show that the numerical scheme is very effective and convenient for solving nonlinear partial differential equations of fractional order.  相似文献   

13.
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized Characterization Theorem, we investigate the problem of finding a numerical approximation of solutions. Then we show that any suitable numerical method for ODEs can be applied to solve numerically fuzzy differential equations under generalized differentiability. The generalized Euler approximation method is implemented and its error analysis, which guarantees pointwise convergence, is given. The method’s applicability is illustrated by solving a linear first-order fuzzy differential equation.  相似文献   

14.
该文考虑求解带非线性不等式和等式约束的极大极小优化问题,借助半罚函数思想,提出了一个新的广义投影算法.该算法具有以下特点:由一个广义梯度投影显式公式产生的搜索方向是可行下降的;构造了一个新型的最优识别控制函数;在适当的假设条件下具有全局收敛性和强收敛性.最后,通过初步的数值试验验证了算法的有效性.  相似文献   

15.
Most existing methods of global optimization for generalized geometric programming (GGP) actually compute an approximate optimal solution of a linear or convex relaxation of the original problem. However, these approaches may sometimes provide an infeasible solution, or far from the true optimum. To overcome these limitations, a robust solution algorithm is proposed for global optimization of (GGP) problem. This algorithm guarantees adequately to obtain a robust optimal solution, which is feasible and close to the actual optimal solution, and is also stable under small perturbations of the constraints.  相似文献   

16.
We develop a continuous variable neighborhood search heuristic for minimizing the potential energy function of a molecule. Computing the global minimum of this function is very difficult because it has a large number of local minimizers which grows exponentially with molecule size. Experimental evidence shows that in the great majority of cases the global minimum potential energy of a given molecule corresponds to its three-dimensional structure and this structure is important because it dictates most of the properties of the molecule. Computational results for problems with up to 200 degrees of freedom are presented and favourable compared with other two existing methods from the literature.  相似文献   

17.
18.
Many local optimal solution methods have been developed for solving generalized geometric programming (GGP). But up to now, less work has been devoted to solving global optimization of (GGP) problem due to the inherent difficulty. This paper considers the global minimum of (GGP) problems. By utilizing an exponential variable transformation and the inherent property of the exponential function and some other techniques the initial nonlinear and nonconvex (GGP) problem is reduced to a sequence of linear programming problems. The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Test results indicate that the proposed algorithm is extremely robust and can be used successfully to solve the global minimum of (GGP) on a microcomputer.  相似文献   

19.
In this paper, a branch and bound approach is proposed for global optimization problem (P) of the sum of generalized polynomial fractional functions under generalized polynomial constraints, which arises in various practical problems. Due to its intrinsic difficulty, less work has been devoted to globally solving this problem. By utilizing an equivalent problem and some linear underestimating approximations, a linear relaxation programming problem of the equivalent form is obtained. Consequently, the initial non-convex nonlinear problem (P) is reduced to a sequence of linear programming problems through successively refining the feasible region of linear relaxation problem. The proposed algorithm is convergent to the global minimum of the primal problem by means of the solutions to a series of linear programming problems. Numerical results show that the proposed algorithm is feasible and can successfully be used to solve the present problem (P).  相似文献   

20.
The barebones differential evolution (BBDE) is a new, almost parameter-free optimization algorithm that is a hybrid of the barebones particle swarm optimizer and differential evolution. Differential evolution is used to mutate, for each particle, the attractor associated with that particle, defined as a weighted average of its personal and neighborhood best positions. The performance of the proposed approach is investigated and compared with differential evolution, a Von Neumann particle swarm optimizer and a barebones particle swarm optimizer. The experiments conducted show that the BBDE provides excellent results with the added advantage of little, almost no parameter tuning. Moreover, the performance of the barebones differential evolution using the ring and Von Neumann neighborhood topologies is investigated. Finally, the application of the BBDE to the real-world problem of unsupervised image classification is investigated. Experimental results show that the proposed approach performs very well compared to other state-of-the-art clustering algorithms in all measured criteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号