首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In this paper, a modified Newton’s method for the best rank-one approximation problem to tensor is proposed. We combine the iterative matrix of Jacobi-Gauss-Newton (JGN) algorithm or Alternating Least Squares (ALS) algorithm with the iterative matrix of GRQ-Newton method, and present a modified version of GRQ-Newton algorithm. A line search along the projective direction is employed to obtain the global convergence. Preliminary numerical experiments and numerical comparison show that our algorithm is efficient.  相似文献   

2.
The conceptual design of aircraft often entails a large number of nonlinear constraints that result in a nonconvex feasible design space and multiple local optima. The design of the high-speed civil transport (HSCT) is used as an example of a highly complex conceptual design with 26 design variables and 68 constraints. This paper compares three global optimization techniques on the HSCT problem and two test problems containing thousands of local optima and noise: multistart local optimizations using either sequential quadratic programming (SQP) as implemented in the design optimization tools (DOT) program or Snyman's dynamic search method, and a modified form of Jones' DIRECT global optimization algorithm. SQP is a local optimizer, while Snyman's algorithm is capable of moving through shallow local minima. The modified DIRECT algorithm is a global search method based on Lipschitzian optimization that locates small promising regions of design space and then uses a local optimizer to converge to the optimum. DOT and the dynamic search algorithms proved to be superior for finding a single optimum masked by noise of trigonometric form. The modified DIRECT algorithm was found to be better for locating the global optimum of functions with many widely separated true local optima.  相似文献   

3.
A modified ABS algorithm for solving a class of singular nonlinear systems,F(x)=0,F∈R n, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation ofF at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.  相似文献   

4.
In this paper, we first discuss how the nearly exact (NE) method proposed by Moré and Sorensen [14] for solving trust region (TR) subproblems can be modified to solve large-scale “low-rank” TR subproblems efficiently. Our modified algorithm completely avoids computation of Cholesky factorizations by instead relying primarily on the Sherman–Morrison–Woodbury formula for computing inverses of “diagonal plus low-rank” type matrices. We also implement a specific version of the modified log-barrier (MLB) algorithm proposed by Polyak [17] where the generated log-barrier subproblems are solved by a trust region method. The corresponding direction finding TR subproblems are of the low-rank type and are then solved by our modified NE method. We finally discuss the computational results of our implementation of the MLB method and its comparison with a version of LANCELOT [5] based on a collection extracted from CUTEr [12] of nonlinear programming problems with simple bound constraints.   相似文献   

5.
1.IntroductionLarge-scalematrixeigenproblemsariseinappliedsciencesandmanyengineeringapplications.Arnoldi'smethod[1'2]anditsblockversion[3--6]areverypopularforsolvingthem.Thesemethodshavebeenintensivelyinvestigatedsincethe1980s,bothintheoryandinalgorithms;wereferto[7--17]fordetails.WhenmstepsoftheblockArnoldiprocessareperformed,anorthonormalbasis{K}7=1oftheblockKrylovsubspaceK.(VI,A)spannedbyVI5AVI,'IAm--1VIisgenerated,whereVIisaninitialNxporthogonalmatrix,andtherestrictionofAtoKm(V…  相似文献   

6.
The modified Weiszfeld method [Y. Vardi, C.H. Zhang, A modified Weiszfeld algorithm for the Fermat-Weber location problem, Mathematical Programming 90 (2001) 559-566] is perhaps the most widely-used algorithm for the single-source Weber problem (SWP). In this paper, in order to accelerate the efficiency for solving SWP, a new numerical method, called Weiszfeld-Newton method, is developed by combining the modified Weiszfeld method with the well-known Newton method. Global convergence of the new Weiszfeld-Newton method is proved under mild assumptions. For the multi-source Weber problem (MWP), a new location-allocation heuristic, Cooper-Weiszfeld-Newton method, is presented in the spirit of Cooper algorithm [L. Cooper, Heuristic methods for location-allocation problems, SIAM Review 6 (1964) 37-53], using the new Weiszfeld-Newton method in the location phase to locate facilities and adopting the nearest center reclassification algorithm (NCRA) in the allocation phase to allocate the customers. Preliminary numerical results are reported to verify the evident effectiveness of Weiszfeld-Newton method for SWP and Cooper-Weiszfeld-Newton method for MWP.  相似文献   

7.
Based on the modified state-space self-tuning control (STC) via the observer/Kalman filter identification (OKID) method, an effective low-order tuner for fault-tolerant control of a class of unknown nonlinear stochastic sampled-data systems is proposed in this paper. The OKID method is a time-domain technique that identifies a discrete input–output map by using known input–output sampled data in the general coordinate form, through an extension of the eigensystem realization algorithm (ERA). Then, the above identified model in a general coordinate form is transformed to an observer form to provide a computationally effective initialization for a low-order on-line “auto-regressive moving average process with exogenous (ARMAX) model”-based identification. Furthermore, the proposed approach uses a modified Kalman filter estimate algorithm and the current-output-based observer to repair the drawback of the system multiple failures. Thus, the fault-tolerant control (FTC) performance can be significantly improved. As a result, a low-order state-space self-tuning control (STC) is constructed. Finally, the method is applied for a three-tank system with various faults to demonstrate the effectiveness of the proposed methodology.  相似文献   

8.
蒋建林  潘蕴文 《计算数学》2018,40(4):470-484
 多设施Weber问题(multi-source Weber problem,MWP)是设施选址中的重要模型之一,而Cooper算法是求解MWP最为常用的数值方法.Cooper算法包含选址步和分配步,两步交替进行直至达到局部最优解.本文对Cooper算法的选址步和分配步分别引入改进策略,提出改进Cooper算法:选址步中将Weiszfeld算法和adaptive Barzilai-Borwein (ABB)算法结合,提出收敛速度更快的ABB-Weiszfeld算法求解选址子问题;分配步中提出贪婪簇分割策略来处理退化设施,由此进一步提出具有更好性质的贪婪混合策略.数值实验表明本文提出的改进策略有效地提高了Cooper算法的计算效率,改进算法有着更好的数值表现.  相似文献   

9.
结合磨光法和最优化理论提出一种随机优化磨光算法(SOS算法),算法通过原始值的参数化和调整幅度的修改,利用优化理论优化控制点.实例表明,随机优化磨光算法比样条修正磨光法和灰色马尔可夫链预测模型精度要高得多;而且所得到的误差变化更稳定.  相似文献   

10.
The aim of this paper is to present a thorough reassessment of the Snyman–Fatti (SF) Multi-start Global Minimization Algorithm with Dynamic Search Trajectories, first published twenty years ago. The reassessment is done with reference to a slightly modified version of the original method, the essentials of which are summarized here. Results of the performance of the current code on an extensive set of standard test problems commonly in use today, are presented. This allows for a fair assessment to be made of the performance of the SF algorithm relative to that of the popular Differential Evolution (DE) method, for which test results on the same standard set of test problems used here for the SF algorithm, are also given. The tests show that the SF algorithm, that requires relatively few parameter settings, is a reliably robust and competitive method compared to the DE method. The results also indicate that the SF trajectory algorithm is particularly promising to solve minimum potential energy problems to determine the structure of atomic and molecular clusters.  相似文献   

11.
In this paper an implementation is discussed of a modified CANDECOMP algorithm for fitting Lazarsfeld's latent class model. The CANDECOMP algorithm is modified such that the resulting parameter estimates are non-negative and ‘best asymptotically normal’. In order to achieve this, the modified CANDECOMP algorithm minimizes a weighted least squares function instead of an unweighted least squares function as the traditional CANDECOMP algorithm does. To evaluate the new procedure, the modified CANDECOMP procedure with different weighting schemes is compared on five published data sets with the widely-used iterative proportional fitting procedure for obtaining maximum likelihood estimates of the parameters in the latent class model. It is found that, with appropriate weights, the modified CANDECOMP algorithm yields solutions that are nearly identical with those obtained by means of the maximum likelihood procedure. While the modified CANDECOMP algorithm tends to be computationally more intensive than the maximum likelihood method, it is very flexible in that it easily allows one to try out different weighting schemes.  相似文献   

12.
In this paper, we apply the modified variational iteration method (MVIM) for solving the heat and wave-like equations. The proposed modification is made by introducing He’s polynomials in the correction functional. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that proposed technique solves nonlinear problems without using the Adomian’s polynomials can be considered as a clear advantage of this algorithm over the decomposition method.  相似文献   

13.
A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F(x) = 0, wherex, F ∈ Rn, is presented, constructed by combining a discretization ABS algorithm and a method of Hoy and Schwetlick (1990). The second order differential operation ofF at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.  相似文献   

14.
Group Technology (GT) is a useful way of increasing the productivity for manufacturing high quality products and improving the flexibility of manufacturing systems. Cell formation (CF) is a key step in GT. It is used in designing good cellular manufacturing systems using the similarities between parts in relation to the machines in their manufacture. It can identify part families and machine groups. Recently, neural networks (NNs) have been widely applied in GT due to their robust and adaptive nature. NNs are very suitable in CF with a wide variety of real applications. Although Dagli and Huggahalli adopted the ART1 network with an application in machine-part CF, there are still several drawbacks to this approach. To address these concerns, we propose a modified ART1 neural learning algorithm. In our modified ART1, the vigilance parameter can be simply estimated by the data so that it is more efficient and reliable than Dagli and Huggahalli’s method for selecting a vigilance value. We then apply the proposed algorithm to machine-part CF in GT. Several examples are presented to illustrate its efficiency. In comparison with Dagli and Huggahalli’s method based on the performance measure proposed by Chandrasekaran and Rajagopalan, our modified ART1 neural learning algorithm provides better results. Overall, the proposed algorithm is vigilance parameter-free and very efficient to use in CF with a wide variety of machine/part matrices.  相似文献   

15.
The trajectory of the autonomous chaotic system deviates from the original path leading to a deformation in its attractor while calculating Poincaré map using the method presented by Hénon [Hénon M. Physica D 1982;5:412]. Also, the Poincaré map obtained is found to be the Poincaré map of deformed attractor instead of the original attractor. In order to overcome these drawbacks, this method is slightly modified by introducing an important change in the existing algorithm. Then it is shown that the modified Hénon method calculates the Poincaré map of the original attractor and it does not affect the system dynamics (attractor). The modified method is illustrated by means of the Lorenz and Chua systems.  相似文献   

16.
We present two linearization-based algorithms for mixed-integer nonlinear programs (MINLPs) having a convex continuous relaxation. The key feature of these algorithms is that, in contrast to most existing linearization-based algorithms for convex MINLPs, they do not require the continuous relaxation to be defined by convex nonlinear functions. For example, these algorithms can solve to global optimality MINLPs with constraints defined by quasiconvex functions. The first algorithm is a slightly modified version of the LP/NLP-based branch-and-bouund \((\text{ LP/NLP-BB })\) algorithm of Quesada and Grossmann, and is closely related to an algorithm recently proposed by Bonami et al. (Math Program 119:331–352, 2009). The second algorithm is a hybrid between this algorithm and nonlinear programming based branch-and-bound. Computational experiments indicate that the modified LP/NLP-BB method has comparable performance to LP/NLP-BB on instances defined by convex functions. Thus, this algorithm has the potential to solve a wider class of MINLP instances without sacrificing performance.  相似文献   

17.
In this paper, we prove strong convergence theorems by the hybrid method for a family of hemi-relatively nonexpansive mappings in a Banach space. Our results improve and extend the corresponding results given by Qin et al. [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Haiyun Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-?-nonexpansive mappings, Appl. Math. Lett. 22 (2009) 1051-1055], and at the same time, our iteration algorithm is different from the Kimura and Takahashi algorithm, which is a modified Mann-type iteration algorithm [Yasunori Kimura, Wataru Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in Banach space, J. Math. Anal. Appl. 357 (2009) 356-363]. In addition, we succeed in applying our algorithm to systems of equilibrium problems which contain a family of equilibrium problems.  相似文献   

18.
Recently, Kort and Bertsekas (Ref. 1) and Hartman (Ref. 2) presented independently a new penalty function algorithm of exponential type for solving inequality-constrained minimization problems. The main purpose of this work is to give a proof on the rate of convergence of a modification of the exponential penalty method proposed by these authors. We show that the sequence of points generated by the modified algorithm converges to the solution of the original nonconvex problem linearly and that the sequence of estimates of the optimal Lagrange multiplier converges to this multiplier superlinearly. The question of convergence of the modified method is discussed. The present paper hinges on ideas of Mangasarian (Ref. 3), but the case considered here is not covered by Mangasarian's theory.  相似文献   

19.
Ioana Pomparău 《PAMM》2013,13(1):419-420
In the paper [1], a direct version of the classical Kaczmarz algorithm was proposed, which gives us in only one iteration a solution of an arbitrary consistent system of linear equations. Unfortunately, as any direct method applied to large sparse matrices, this algorithm is based on some modifications of the system matrix sparsity structure such that a big fill-in appears. In order to overcome this difficulty, in the present paper we propose a modified version of this direct Kaczmarz algorithm in which the transformations applied to the system matrix try to conserve the initial sparsity structure. This transformations are done via clustering using Jaccard and Hamming distances. The modified Kaczmarz algorithm is no more a direct method, but we obtain an acceleration of convergence with respect to the classical Kaczmarz algorithm. Numerical experiments which ilustrate the efficiency of our algorithm are also presented. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
On the superlinear local convergence of a filter-SQP method   总被引:5,自引:0,他引:5  
Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function value in the filter together with an appropriate infeasibility measure. Moreover, it is shown that the modified trust-region filter-SQP method has the same global convergence properties as the original algorithm in [8].Mathematics Subject Classification (2000): 90C55, 65K05, 90C30  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号