首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 73 毫秒
1.
This paper investigates the forced Duffing equation with integral boundary conditions. Its approximate solution is developed by combining the homotopy perturbation method (HPM) and the reproducing kernel Hilbert space method (RKHSM). HPM is based on the use of the traditional perturbation method and the homotopy technique. The HPM can reduce nonlinear problems to some linear problems and generate a rapid convergent series solution in most cases. RKHSM is also an analytical technique, which can solve powerfully linear boundary value problems. Therefore, the forced Duffing equation with integral boundary conditions can be solved using advantages of these two methods. Two numerical examples are presented to illustrate the strength of the method.  相似文献   

2.
The nonlinear singular initial value problems including generalized Lane–Emden-type equations are investigated by combining homotopy perturbation method (HPM) and reproducing kernel Hilbert space method (RKHSM). He’s HPM is based on the use of traditional perturbation method and homotopy technique and can reduce a nonlinear problem to some linear problems and generate a rapid convergent series solution in most cases. RKHSM is also an analytical technique, which can overcome the difficulty at the singular point of non-homogeneous, linear singular initial value problems; especially when the singularity appears on the right-hand side of this type of equations, so it can solve powerfully linear singular initial value problems. Therefore, using advantages of these two methods, more general nonlinear singular initial value problems can be solved powerfully. Some numerical examples are presented to illustrate the strength of the method.  相似文献   

3.
In this work, we present an algorithm for solving fourth-order multi-point boundary value problems (BVPs) based on the reproducing kernel method (RKM). In previous works, the RKM has been used to solve various two-point BVPs. However, it cannot be used directly to solve multi-point BVPs, since it is very difficult to obtain a reproducing kernel satisfying multi-point boundary conditions. The aim of this work is to fill this gap. A numerical example is given to demonstrate the efficiency of the present method. The results obtained show that the present method is quite reliable for linear fourth-order multi-point BVPs.  相似文献   

4.
In this paper, an algorithm is presented for solving second-order nonlinear multi-point boundary value problems (BVPs). The method is based on an iterative technique and the reproducing kernel method (RKM). Two numerical examples are provided to show the reliability and efficiency of the present method.  相似文献   

5.
In this paper, a novel method is proposed for solving nonlinear two-point boundary value problems (BVPs). This method is based on a combination of the Adomian decomposition method (ADM) and the reproducing kernel method (RKM). A major advantage of this method over standard ADM is that it can avoid unnecessary computation in determining the unknown parameters. The proposed method can be applied to singular and nonsingular BVPs. Numerical results obtained using the scheme presented here show that the numerical scheme is very effective and convenient for solving nonlinear two-point boundary value problems.  相似文献   

6.
In this article, the homotopy perturbation method [He JH. Homotopy perturbation technique. Comput Meth Appl Mech Eng 1999;178:257–62; He JH. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Non-Linear Mech 2000;35(1):37–43; He JH. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 2004;156:527–39; He JH. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 2003;135:73–79; He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 2004;151:287–92; He JH. Application of homotopy perturbation method to nonlinear wave equations Chaos, Solitons & Fractals 2005;26:695–700] is applied to solve linear and nonlinear systems of integro-differential equations. Some nonlinear examples are presented to illustrate the ability of the method for such system. Examples for linear system are so easy that has been ignored.  相似文献   

7.
In this paper, the homotopy perturbation method (HPM) is employed to solve Camassa-Holm equation. Approximate explicit solution is obtained. Comparing the approximate solution with its exact solution shows the applicability, accuracy and efficiency of HPM in solving nonlinear differential equations. It is predicted that HPM can be widely applied in applied mathematics and engineering problems.  相似文献   

8.
A homotopy perturbation method (HPM) is proposed to solve non-linear systems of second-order boundary value problems. HPM yields solutions in convergent series forms with easily computable terms, and in some cases, yields exact solutions in one iteration. Moreover, this technique does not require any discretization, linearization or small perturbations and therefore reduces the numerical computations a lot. Some numerical results are also given to demonstrate the validity and applicability of the presented technique. The results reveal that the method is very effective, straightforward and simple.  相似文献   

9.
This paper reports a modified homotopy perturbation algorithm, called the domain decomposition homotopy perturbation method (DDHPM), for solving two‐point singular boundary value problems arising in science and engineering. The essence of the approach is to split the domain of the problem into a number of nonoverlapping subdomains. In each subdomain, a method based on a combination of HPM and integral equation formalism is implemented. The boundary condition at the right endpoint of each inner subdomain is established before deriving an iterative scheme for the components of the solution series. The accuracy and efficiency of the DDHPM are demonstrated by 4 examples (2 nonlinear and 2 linear). In comparison with the traditional HPM, the proposed domain decomposition HPM is highly accurate.  相似文献   

10.
In this paper the problem of fully developed laminar steady forced convection inside a porous‐saturated pipe with uniform wall temperature is presented and the homotopy perturbation method (HPM) and the variational iteration method (VIM) are employed to solve the differential equations governing the problem. The obtained results are valid for the whole solution domain with high accuracy. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and science. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an analytic method for highly nonlinear problems, namely, homotopy perturbation (HPM) method, is used to solve the Von Karman swirling viscous flow, governed by a set of two fully coupled differential equations with strong nonlinearity. An explicit, purely analytic and uniformly valid solution is given. Comparison of the results obtained by the method reveals that HPM is more effective and easy to use.  相似文献   

12.
In this paper, an Optimal Homotopy Analysis Method (Optimal HAM) is applied to solve the linear optimal control problems (OCPs), which have a quadratic performance index. This approach contains at most two convergence-control parameters which depend on the control system and is computationally rather efficient. A squared residual error for the system is defined, which can be used to find the unknown optimal convergence-control parameters by using Mathematica package BVPh (version 2.0). The results of comparisons among the proposed method, the homotopy perturbation method (HPM), the Adomian decomposition method (ADM), the differential transform method (DTM) and the homotopy analysis method (HAM) provide verification for the validity of the proposed approach. Moreover, numerical results are presented by several examples involving scalar and 2nd-order systems to clarify the efficiency and high accuracy of the proposed approach.  相似文献   

13.
In this work, we implement a relatively analytical technique, the homotopy perturbation method (HPM), for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo derivatives. This method can be used as an alternative to obtain analytic and approximate solutions of different types of fractional differential equations which applied in engineering mathematics. The corresponding solutions of the integer order equations are found to follow as special cases of those of fractional order equations. He’s homotopy perturbation method (HPM) which does not need small parameter is implemented for solving the differential equations. It is predicted that HPM can be found widely applicable in engineering.  相似文献   

14.
The homotopy method for the solution of nonlinear equations is revisited in the present study. An analytic method is proposed for determining the valid region of convergence of control parameter of the homotopy series, as an alternative to the classical way of adjusting the region through graphical analysis. Illustrative examples are presented to exhibit a vivid comparison between the homotopy perturbation method (HPM) and the homotopy analysis method (HAM). For special choices of the initial guesses it is shown that the convergence-control parameter does not cover the HPM. In such cases, blindly using the HPM yields a non convergence series to the sought solution. In addition to this, HPM is shown not always to generate a continuous family of solutions in terms of the homotopy parameter. By the convergence-control parameter this can however be prevented to occur in the HAM.  相似文献   

15.
In this article, Laplace decomposition method (LDM) is applied to obtain series solutions of classical Blasius equation. The technique is based on the application of Laplace transform to nonlinear Blasius flow equation. The nonlinear term can easily be handled with the help of Adomian polynomials. The results of the present technique have closed agreement with series solutions obtained with the help of Adomian decomposition method (ADM), variational iterative method (VIM) and homotopy perturbation method (HPM).  相似文献   

16.
In this paper, homotopy perturbation method (HPM) and variational iteration method (VIM) are applied to solve nonlinear oscillator differential equations. Illustrative examples reveal that these methods are very effective and convenient for solving nonlinear differential equations. Moreover, the methods do not require linearization or small perturbation. Comparisons are also made between the exact solutions and the results of the homotopy perturbation method and variational iteration method in order to prove the precision of the results obtained from both methods mentioned.  相似文献   

17.
A combination of the hybrid spectral collocation technique and the homotopy analysis method is used to construct an iteration algorithm for solving a class of nonlinear optimal control problems (NOCPs). In fact, the nonlinear two-point boundary value problem (TPBVP), derived from the Pontryagin’s Maximum Principle (PMP), is solved by spectral homotopy analysis method (SHAM). For the first time, we present here a convergence proof for SHAM. We treat in detail Legendre collocation and Chebyshev collocation. It is indicated that Legendre collocation gives the same numerical results with Chebyshev collocation. Comparisons are made between SHAM, Matlab bvp4c generated results and results from literature such as homotopy perturbation method (HPM), optimal homotopy perturbation method (OHPM) and differential transformations.  相似文献   

18.
In this work, we apply the homotopy analysis method to solve fin problems with temperature-dependent thermal conductivity. The results are compared with the solutions obtained by the Adomian decomposition method (ADM), homotopy perturbation method (HPM) and with the Taylor series expansion method as well. The results of the comparisons have shown that the ADM and HPM are just an approximation of the present study and the accuracy of the solution obtained by the present study is much better than the latter algorithms.  相似文献   

19.
In this article, a new homotopy perturbation method (NHPM) is introduced to obtain exact solutions of system of ODEs. Theoretical considerations are discussed. Comparison of the results of applying NHPM with those of homotopy perturbation method (HPM) and Adomia's decomposition method (ADM) leads to significant consequences. Three examples, including stiff system of linear and nonlinear ODEs are given to demonstrate the efficiency of the new method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

20.
《Applied Mathematical Modelling》2014,38(5-6):1607-1611
In this paper, He’s homotopy perturbation method (HPM) is applied for solving linear programming (LP) problems. This paper shows that some recent findings about this topic cannot be applied for all cases. Furthermore, we provide the correct application of HPM for LP problems. The proposed method has a simple and graceful structure. Finally, a numerical example is displayed to illustrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号