首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully discrete discontinuous Galerkin methods with variable mesh- es in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discontinuous Galerkin methods indeed provide an efficient and viable alternative to the mixed finite element methods and nonconforming (plate) finite element methods for solving fourth order partial differential equations.

  相似文献   


2.
A differential form is a field which assigns to each point of a domain an alternating multilinear form on its tangent space. The exterior derivative operation, which maps differential forms to differential forms of the next higher order, unifies the basic first order differential operators of calculus, and is a building block for a great variety of differential equations. When discretizing such differential equations by finite element methods, stable discretization depends on the development of spaces of finite element differential forms. As revealed recently through the finite element exterior calculus, for each order of differential form, there are two natural families of finite element subspaces associated to a simplicial triangulation. In the case of forms of order zero, which are simply functions, these two families reduce to one, which is simply the well-known family of Lagrange finite element subspaces of the first order Sobolev space. For forms of degree 1 and of degree n − 1 (where n is the space dimension), we obtain two natural families of finite element subspaces, unifying many of the known mixed finite element spaces developed over the last decades. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Algorithmic aspects of a class of finite element collocation methods for the approximate numerical solution of elliptic partial differential equations are described Locall for each finite element the approximate solution is a polynomial. polynomials corresponding toadjacent finite elements need not match continuously but their values and noumal derivatives match at a discrete set of points on the common boundary.High order accuracy can be attained by increasing the number of mathching points and the number of colloction points for each finite element.Forlinear equations the collocation methods can be equivalently definde as generlized finite difference methods. The linear (or linearzed )equations that arise from the discretization lend themselves well to solution by the methods of the methods nested dissection.An implememtation is described and some numerical results are givevn.  相似文献   

4.
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.  相似文献   

5.
Hamilton系统的连续有限元法   总被引:1,自引:0,他引:1  
利用常微分方程的连续有限元法,对非线性Hamilton系统证明了连续一次、二次有限元法分别是2阶和3阶的拟辛格式,且保持能量守恒;连续有限元法是辛算法对线性Hamilton系统,且保持能量守恒.在数值计算上探讨了辛性质和能量守恒性,与已有的辛算法进行对比,结果与理论相吻合.  相似文献   

6.
This paper reviews the research work that has been done to implement the finite element method for solving partial differential equations on the ICL distributed array processor (DAP). A brief outline of the principle features of the method is given, followed by details of the novel techniques required for implementation on the highly parallel architecture. Various methods of solution of the finite element equations are discussed; both direct and iterative techniques are included. The current state-of-the-art favours the use of the preconditioned conjugate gradient method. Some suggestions for future research work on parallel finite element methods are made.  相似文献   

7.
Linearly-implicit two-step peer methods are successfully applied in the numerical solution of ordinary differential and differential-algebraic equations. One of their strengths is that even high-order methods do not show order reduction in computations for stiff problems. With this property, peer methods commend themselves as time-stepping schemes in finite element calculations for time-dependent partial differential equations (PDEs).We have included a class of linearly-implicit two-step peer methods in the finite element software Kardos. There PDEs are solved following the Rothe method, i.e. first discretised in time, leading to linear elliptic problems in each stage of the peer method. We describe the construction of the methods and how they fit into the finite element framework. We also discuss the starting procedure of the two-step scheme and questions of local temporal error control.The implementation is tested for two-step peer methods of orders three to five on a selection of PDE test problems on fixed spatial grids. No order reduction is observed and the two-step methods are more efficient, at least competitive, in comparison with the linearly implicit one-step methods provided in Kardos.  相似文献   

8.
刘蕴贤 《计算数学》2001,23(2):187-198
1.引言 三维热传导型半导体器件瞬态问题的数学模型由四个非线性偏微分方程描述 [1,2].工程研究中一般考虑绝流边条件,由于绝流条件可以看作一反射条件来处理、为了数值分析方便,我们在此考虑三维周期问题: 其中, =[0,1]3,未知函数是电子位势 ;电子,空穴浓度e,p;温度函数T.方程(1,1)-(1.4)中出现的系数均有正的上下界,且是 周期的. a=Q/ε,Q,ε分别表示电子负荷和介电系数,均为正常数.N(x)是给定的函数.Ds(x)为扩散系数,μs(x)为迁移率,s=e,P.R(e,p,T)…  相似文献   

9.
Boundary value problems for time-dependent convection-diffusion-reaction equations are basic models of problems in continuum mechanics. To study these problems, various numerical methods are used. With a finite difference, finite element, or finite volume approximation in space, we arrive at a Cauchy problem for systems of ordinary differential equations whose operator is asymmetric and indefinite. Explicit-implicit approximations in time are conventionally used to construct splitting schemes in terms of physical processes with separation of convection, diffusion, and reaction processes. In this paper, unconditionally stable schemes for unsteady convection-diffusion-reaction equations are constructed with explicit-implicit approximations used in splitting the operator reaction. The schemes are illustrated by a model 2D problem in a rectangle.  相似文献   

10.
We present counterexamples to the asymptotic expansion of interpolation in finite element methods for solving differential equations, which was expected to hold in the finite element community.   相似文献   

11.
一类退化非线性抛物型方程组的变网格有限元方法   总被引:18,自引:2,他引:16  
袁益让 《计算数学》1986,8(2):121-136
本文研究一类退化非线性抛物型方程组的变网格有限元方法.我们从油、水两相渗流驱动问题的实际需要出发,研究在求解过程中对不同的时刻空间区域采用不同的有限元网格.例如在两相驱动问题中,油、水前沿的位置将随时间而向前推移,从而前沿曲  相似文献   

12.
The convergence of finite element methods for elliptic and parabolic partial differential equations is well-established if source terms are sufficiently smooth. Noting that finite element computation is easily implemented even when the source terms are measure-valued—for instance, modeling point sources by Dirac delta distributions—we prove new convergence order results in two and three dimensions both for elliptic and for parabolic equations with measures as source terms. These analytical results are confirmed by numerical tests using COMSOL Multiphysics.  相似文献   

13.
The isogeometric analysis method is extended for addressing the plane elasticity problems with functionally graded materials. The proposed method which employs an improved form of the isogeometric analysis approach allows gradation of material properties through the patches and is given the name Generalized Iso-Geometrical Analysis (GIGA). The gradations of materials, which are considered as imaginary surfaces over the computational domain, are defined in a fully isoparametric formulation by using the same NURBS basis functions employed for the construction of the geometry and the approximation of the solution. The basic concept of the developed approach is concisely explained and its relation to the standard isogeometric analysis method is pointed out. It is shown that the difficulties encountered in the finite element analysis of the functionally graded materials are alleviated to a large degree by employing the mentioned method. Different numerical examples are presented and compared with available analytical solutions as well as the conventional and graded finite element methods to demonstrate the performance and accuracy of the proposed approach. The presented procedure can also be employed for solving other partial differential equations with non-constant coefficients.  相似文献   

14.
Monotone Schwarz iterative methods for parabolic partial differential equations are well known for their advantage of eliminating the search for an initial solution. In this article, we propose a monotone Schwarz iterative method for singularly perturbed parabolic retarded differential-difference equations based on a three-step Taylor Galerkin finite element scheme. The stability and ε-uniform convergence of the three-step Taylor Galerkin finite element method have been discussed. Further, by using maximum principle and induction hypothesis, the convergence of the proposed monotone Schwarz iterative method has been established.  相似文献   

15.
In this paper a mixed method, which combines the finite element method and the differential quadrature element method (DQEM), is presented for solving the time dependent problems. In this study, the finite element method is first used to discretize the spatial domain. The DQEM is then employed as a step-by-step DQM in time domain to solve the resulting initial value problem. The resulting algebraic equations can be solved by either direct or iterative methods. Two general formulations using the DQM are also presented for solving a system of linear second-order ordinary differential equations in time. The application of the formulation is then shown by solving a sample moving load problem. Numerical results show that the present mixed method is very efficient and reliable.  相似文献   

16.
The finite volume element method is a discretization technique for partial differential equations, but in general case the coefficient matrix of its linear system is not symmetric, even for the self-adjoint continuous problem. In this paper we develop a kind of symmetric modified finite volume element methods both for general self-adjoint elliptic and for parabolic problems on general discretization, their coefficient matrix are symmetric. We give the optimal order energy norm error estimates. We also prove that the difference between the solutions of the finite volume element method and symmetric modified finite volume element method is a high order term.  相似文献   

17.
The methodology of dual weighted residuals is applied to an optimal control problem for ordinary differential equations. The differential equations are discretized by finite element methods. An a posteriori error estimate is derived and an adaptive algorithm is formulated. The algorithm is implemented in Matlab and tested on a simple model problem from vehicle dynamics.  相似文献   

18.
本文将摄动法和有限条法结合起来进行矩形板的大挠度弯曲分析.用摄动的概念,将非线性微分方程组化为一系列线性微分方程组,然后用有限条法解这些线性微分方程组.  相似文献   

19.
In this paper, a unified approach for analysing finite dimensional approximations to a class of partial differential equations boundary value problems (second‐kind Fredholm differential equations) is introduced. The approach is shown to be general despite of its extremely simple form. In particular, it is expected to be useful in the convergence analysis of finite element methods for solving PDE problems. Three specific examples are presented to illustrate the broad applicability of the approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the comparison of physical spline finite element method (PSFEM), in which differential equations are incorporated into interpolations of basic elements, with least-squares finite element method (LSFEM) and mixed Galerkin finite element method (MGFEM) on the numerical solution of one dimensional Helmholtz equation applied to an acoustic scattering problem. Firstly, all three methods are explained in detail and then it is shown that PSFEM reaches higher precision in a shorter time with fewer nodes than the other methods. It is also observed that this method is well suited for high frequency acoustic problems. Consequently, the results of PSFEM point out better efficiency in terms of number of unknowns and accuracy level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号