首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonlinear iteration method named the Picard-Newton iteration is studied for a two-dimensional nonlinear coupled parabolic-hyperbolic system. It serves as an efficient method to solve a nonlinear discrete scheme with second spatial and temporal accuracy. The nonlinear iteration scheme is constructed with a linearization-discretization approach through discretizing the linearized systems of the original nonlinear partial differential equations. It can be viewed as an improved Picard iteration, and can accelerate convergence over the standard Picard iteration. Moreover, the discretization with second-order accuracy in both spatial and temporal variants is introduced to get the Picard-Newton iteration scheme. By using the energy estimate and inductive hypothesis reasoning, the difficulties arising from the nonlinearity and the coupling of different equation types are overcome. It follows that the rigorous theoretical analysis on the approximation of the solution of the Picard-Newton iteration scheme to the solution of the original continuous problem is obtained, which is different from the traditional error estimate that usually estimates the error between the solution of the nonlinear discrete scheme and the solution of the original problem. Moreover, such approximation is independent of the iteration number. Numerical experiments verify the theoretical result, and show that the Picard-Newton iteration scheme with second-order spatial and temporal accuracy is more accurate and efficient than that of first-order temporal accuracy.  相似文献   

2.
In general, proofs of convergence and stability are difficult for symplectic schemes of nonlinear equations. In this paper, a symplectic difference scheme is proposed for an initial-boundary value problem of a coupled nonlinear Schrödinger system. An important lemma and an induction argument are used to prove the unique solvability, convergence and stability of numerical solutions. An iterative algorithm is also proposed for the symplectic scheme and its convergence is proved. Numerical examples show the efficiency of the symplectic scheme and the correction of our numerical analysis.  相似文献   

3.
In this article, we consider Stokes’ first problem for a heated generalized second grade fluid with fractional derivative (SFP-HGSGF). Implicit and explicit numerical approximation schemes for the SFP-HGSGF are presented. The stability and convergence of the numerical schemes are discussed using a Fourier method. In addition, the solvability of the implicit numerical approximation scheme is also analyzed. A Richardson extrapolation technique for improving the order of convergence of the implicit scheme is proposed. Finally, a numerical test is given. The numerical results demonstrate the good performance of our theoretical analysis.  相似文献   

4.
Non-oscillatory schemes are widely used in numerical approximations of nonlinear conservation laws. The Nessyahu–Tadmor (NT) scheme is an example of a second order scheme that is both robust and simple. In this paper, we prove a new stability property of the NT scheme based on the standard minmod reconstruction in the case of a scalar strictly convex conservation law. This property is similar to the One-sided Lipschitz condition for first order schemes. Using this new stability, we derive the convergence of the NT scheme to the exact entropy solution without imposing any nonhomogeneous limitations on the method. We also derive an error estimate for monotone initial data.  相似文献   

5.
A nonlinear iteration method for solving a class of two-dimensional nonlinear coupled systems of parabolic and hyperbolic equations is studied. A simple iterative finite difference scheme is designed; the calculation complexity is reduced by decoupling the nonlinear system, and the precision is assured by timely evaluation updating. A strict theoretical analysis is carried out as regards the convergence and approximation properties of the iterative scheme, and the related stability and approximation properties of the nonlinear fully implicit finite difference (FIFD) scheme. The iterative algorithm has a linear constringent ratio; its solution gives a second-order spatial approximation and first-order temporal approximation to the real solution. The corresponding nonlinear FIFD scheme is stable and gives the same order of approximation. Numerical tests verify the results of the theoretical analysis. The discrete functional analysis and inductive hypothesis reasoning techniques used in this paper are helpful for overcoming difficulties arising from the nonlinearity and coupling and lead to a related theoretical analysis for nonlinear FI schemes.  相似文献   

6.
7.
We analyze arbitrary order linear finite volume transport schemes and show asymptotic stability in L 1 and L for odd order schemes in dimension one. It gives sharp fractional order estimates of convergence for BV solutions. It shows odd order finite volume advection schemes are better than even order finite volume schemes. Therefore the Gibbs phenomena is controlled for odd order finite volume schemes. Numerical experiments sustain the theoretical analysis. In particular the oscillations of the Lax–Wendroff scheme for small Courant numbers are correlated with its non stability in L 1. A scheme of order three is proved to be stable in L 1 and L .  相似文献   

8.
We derive a new high-order compact finite difference scheme for option pricing in stochastic volatility models. The scheme is fourth order accurate in space and second order accurate in time. Under some restrictions, theoretical results like unconditional stability in the sense of von Neumann are presented. Where the analysis becomes too involved we validate our findings by a numerical study. Numerical experiments for the European option pricing problem are presented. We observe fourth order convergence for non-smooth payoff.  相似文献   

9.
Summary. Based on Nessyahu and Tadmor's nonoscillatory central difference schemes for one-dimensional hyperbolic conservation laws [16], for higher dimensions several finite volume extensions and numerical results on structured and unstructured grids have been presented. The experiments show the wide applicability of these multidimensional schemes. The theoretical arguments which support this are some maximum-principles and a convergence proof in the scalar linear case. A general proof of convergence, as obtained for the original one-dimensional NT-schemes, does not exist for any of the extensions to multidimensional nonlinear problems. For the finite volume extension on two-dimensional unstructured grids introduced by Arminjon and Viallon [3,4] we present a proof of convergence for the first order scheme in case of a nonlinear scalar hyperbolic conservation law. Received April 8, 2000 / Published online December 19, 2000  相似文献   

10.
Abstract. Ogr object in this artlcle is to describe tbe Galerkln scheme and nonlin-eax Galerkin scheme for the approximation of nonlinear evolution equations, and tostudy the stability of these schemes. Spatial discretizatlon can be pedormed by eitherGalerkln spectral method or nonlinear Galerldn spectral method; time discretizatlort isdone hy Euler sin.heine wklch is explicit or implicit in the nonlinear terms. According tothe stability analysis of the above schemes, the stability of nonllneex Galerkln methodis better than that of Galexkln method.  相似文献   

11.
Fully implicit schemes with second‐order time evolutions have been applied to simulate nonlinear diffusion problems precisely for a long time, but there is seldom theoretical study for either their convergence properties or efficient iterations. Here, a second‐order time evolution fully implicit scheme for two‐dimensional nonlinear divergence diffusion problem is analyzed. The unique existence of its solution is given. Two new methods are provided to prove its convergence, including entire inductive hypothesis reasoning and a two‐step reasoning process. Rigorous analysis shows the scheme is stable; its solution has second‐order convergence in both space and time to the exact solution of the problem. The convergence is applied to analyze a Newton iteration accelerating the computation and show its quadratic convergent speed and second‐order accuracy. The reasoning techniques also adapt to first‐order time accuracy schemes, and can be extended to analyze a wide class of nonlinear schemes for nonlinear problems. Numerical tests highlight the theoretical results and demonstrate the high performance of the algorithms. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 121–140, 2016  相似文献   

12.
A fundamental research is carried out into convergence and stability properties of IMEX (implicit–explicit) Runge–Kutta schemes applied to reaction–diffusion equations. It is shown that a fully discrete scheme converges if it satisfies certain conditions using a technique of the B-convergence analysis, developed by Burrage, Hundsdorfer and Verwer in 1986. Stability of the schemes is also examined on the basis of a scalar test equation, proposed by Frank, Hundsdorfer and Verwer in 1997.  相似文献   

13.
Summary. In this paper, we provide stability and convergence analysis for a class of finite difference schemes for unsteady incompressible Navier-Stokes equations in vorticity-stream function formulation. The no-slip boundary condition for the velocity is converted into local vorticity boundary conditions. Thom's formula, Wilkes' formula, or other local formulas in the earlier literature can be used in the second order method; while high order formulas, such as Briley's formula, can be used in the fourth order compact difference scheme proposed by E and Liu. The stability analysis of these long-stencil formulas cannot be directly derived from straightforward manipulations since more than one interior point is involved in the formula. The main idea of the stability analysis is to control local terms by global quantities via discrete elliptic regularity for stream function. We choose to analyze the second order scheme with Wilkes' formula in detail. In this case, we can avoid the complicated technique necessitated by the Strang-type high order expansions. As a consequence, our analysis results in almost optimal regularity assumption for the exact solution. The above methodology is very general. We also give a detailed analysis for the fourth order scheme using a 1-D Stokes model. Received December 10, 1999 / Revised version received November 5, 2000 / Published online August 17, 2001  相似文献   

14.
The method of fractional steps for conservation laws   总被引:1,自引:1,他引:0  
Summary The stability, accuracy, and convergence of the basic fractional step algorithms are analyzed when these algorithms are used to compute discontinuous solutions of scalar conservation laws. In particular, it is proved that both first order splitting and Strang splitting algorithms always converge to the unique weak solution satisfying the entropy condition. Examples of discontinuous solutions are presented where both Strang-type splitting algorithms are only first order accurate but one of the standard first order algorithms is infinite order accurate. Various aspects of the accuracy, convergence, and correct entropy production are also studied when each split step is discretized via monotone schemes, Lax-Wendroff schemes, and the Glimm scheme.Partially supported by an Alfred Sloan Foundation fellowship and N.S.F. grant MCS-76-10227Sponsored by US Army under contract No. DAA 629-75-0-0024  相似文献   

15.
In this article, a linearized conservative difference scheme for a coupled nonlinear Schrödinger equations is studied. The discrete energy method and an useful technique are used to analyze the difference scheme. It is shown that the difference solution unconditionally converges to the exact solution with second order in the maximum norm. Numerical experiments are presented to support the theoretical results.  相似文献   

16.
In this paper, two new energy-conserved splitting methods (EC-S-FDTDI and EC-S-FDTDII) for Maxwell’s equations in two dimensions are proposed. Both algorithms are energy-conserved, unconditionally stable and can be computed efficiently. The convergence results are analyzed based on the energy method, which show that the EC-S-FDTDI scheme is of first order in time and of second order in space, and the EC-S-FDTDII scheme is of second order both in time and space. We also obtain two identities of the discrete divergence of electric fields for these two schemes. For the EC-S-FDTDII scheme, we prove that the discrete divergence is of first order to approximate the exact divergence condition. Numerical dispersion analysis shows that these two schemes are non-dissipative. Numerical experiments confirm well the theoretical analysis results.  相似文献   

17.
In this paper, we consider the variable-order Galilei advection diffusion equation with a nonlinear source term. A numerical scheme with first order temporal accuracy and second order spatial accuracy is developed to simulate the equation. The stability and convergence of the numerical scheme are analyzed. Besides, another numerical scheme for improving temporal accuracy is also developed. Finally, some numerical examples are given and the results demonstrate the effectiveness of theoretical analysis.  相似文献   

18.
In this paper, we present a finite difference scheme for the solution of an initial-boundary value problem of the Schrödinger-Boussinesq equation. The scheme is fully implicit and conserves two invariable quantities of the system. We investigate the existence of the solution for the scheme, give computational process for the numerical solution and prove convergence of iteration method by which a nonlinear algebra system for unknown Vn+1 is solved. On the basis of a priori estimates for a numerical solution, the uniqueness, convergence and stability for the difference solution is discussed. Numerical experiments verify the accuracy of our method.  相似文献   

19.
The three-level explicit scheme is efficient for numerical approximation of the second-order wave equations. By employing a fourth-order accurate scheme to approximate the solution at first time level, it is shown that the discrete solution is conditionally convergent in the maximum norm with the convergence order of two. Since the asymptotic expansion of the difference solution consists of odd powers of the mesh parameters (time step and spacings), an unusual Richardson extrapolation formula is needed in promoting the second-order solution to fourth-order accuracy. Extensions of our technique to the classical ADI scheme also yield the maximum norm error estimate of the discrete solution and its extrapolation. Numerical experiments are presented to support our theoretical results.  相似文献   

20.
This paper aims to investigate the numerical approximation of a general second order parabolic stochastic partial differential equation(SPDE) driven by multiplicative and additive noise. Our main interest is on such SPDEs where the nonlinear part is stronger than the linear part, usually called stochastic dominated transport equations. Most standard numerical schemes lose their good stability properties on such equations, including the current linear implicit Euler method. We discretize the SPDE in space by the finite element method and propose a novel scheme called stochastic Rosenbrock-type scheme for temporal discretization. Our scheme is based on the local linearization of the semi-discrete problem obtained after space discretization and is more appropriate for such equations. We provide a strong convergence of the new fully discrete scheme toward the exact solution for multiplicative and additive noise and obtain optimal rates of convergence. Numerical experiments to sustain our theoretical results are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号