首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, we suggest and analyze an extragradient method for solving general nonconvex variational inequalities using the technique of the projection operator. We prove that the convergence of the extragradient method requires only pseudomonotonicity, which is a weaker condition than requiring monotonicity. In this sense, our result can be viewed as an improvement and refinement of the previously known results. Our method of proof is very simple as compared with other techniques.  相似文献   

2.
In this paper, we introduce and consider a new class of variational inequalities, which is called the nonconvex variational inequalities. We establish the equivalence between the nonconvex variational inequalities and the fixed-point problems using the projection technique. This equivalent formulation is used to discuss the existence of a solution of the nonconvex variational inequalities. We also use this equivalent alternative formulation to suggest and analyze a new iterative method for solving the nonconvex variational inequalities. We also discuss the convergence of the iterative method under suitable conditions. Our method of proof is very simple as compared with other techniques.  相似文献   

3.
In this article, we introduce and consider a new system of general nonconvex variational inequalities involving four different operators. We use the projection operator technique to establish the equivalence between the system of general nonconvex variational inequalities and the fixed points problem. This alternative equivalent formulation is used to suggest and analyse some new explicit iterative methods for this system of nonconvex variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Since this new system includes the system of nonconvex variational inequalities, variational inequalities and related optimization problems as special cases, results obtained in this article continue to hold for these problems. Our results can be viewed as a refinement and an improvement of the previously known results for variational inequalities.  相似文献   

4.
In this paper, we introduce and consider a new generalized system of nonconvex variational inequalities with different nonlinear operators. We establish the equivalence between the generalized system of nonconvex variational inequalities and the fixed point problems using the projection technique. This equivalent alternative formulation is used to suggest and analyze a general explicit projection method for solving the generalized system of nonconvex variational inequalities. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.  相似文献   

5.
In this paper, we introduce and study a relaxed extragradient method for finding solutions of a general system of variational inequalities with inverse-strongly monotone mappings in a real Hilbert space. First, this system of variational inequalities is proven to be equivalent to a fixed point problem of nonexpansive mapping. Second, by using the demi-closedness principle for nonexpansive mappings, we prove that under quite mild conditions the iterative sequence defined by the relaxed extragradient method converges strongly to a solution of this system of variational inequalities. In addition, utilizing this result, we provide some applications of the considered problem not just giving a pure extension of existing mathematical problems. J.-C. Yao’s research was partially supported by a grant from the National Science Council.  相似文献   

6.
In this paper, we introduce a new system of general variational inequalities in Banach spaces. We establish the equivalence between this system of variational inequalities and fixed point problems involving the nonexpansive mapping. This alternative equivalent formulation is used to suggest and analyze a modified extragradient method for solving the system of general variational inequalities. Using the demi-closedness principle for nonexpansive mappings, we prove the strong convergence of the proposed iterative method under some suitable conditions.  相似文献   

7.
In this paper, we suggest and analyze a new iterative method for solving monotone mixed variational inequations using the resolvent operator technique. This new method can be viewed as an extension of the extragradient methods for solving the monotone variational inequalities.  相似文献   

8.
We present a subgradient extragradient method for solving variational inequalities in Hilbert space. In addition, we propose a modified version of our algorithm that finds a solution of a variational inequality which is also a fixed point of a given nonexpansive mapping. We establish weak convergence theorems for both algorithms.  相似文献   

9.
In this paper, we introduce and consider a new class of variational inequalities, which is called the nonconvex bifunction variational inequality. We suggest and analyze some iterative methods for solving nonconvex bifunction variational inequalities using the auxiliary principle technique. We prove that the convergence of implicit method requires only pseudomonotonicity, which is weaker condition than monotonicity. Our proof of convergence is very simple. Results proved in this paper may stimulate further research in this dynamic field.  相似文献   

10.
In this paper, we turn our attention to formulating and studying a new class of variational inequalities in a nonconvex setting, called regularized nonconvex mixed variational inequalities. By using the auxiliary principle technique, some new predictor corrector methods for solving such class of regularized nonconvex mixed variational inequalities are suggested and analyzed. The study of convergence analysis of the proposed iterative algorithms requires either pseudomonotonicity or partially mixed relaxed and strong monotonicity of the operator involved in regularized nonconvex mixed variational inequalities. As a consequence of our main results, we provide the correct versions of the algorithms and results presented in the literature.  相似文献   

11.
《Optimization》2012,61(5):981-998
ABSTRACT

In this paper, we introduce several new extragradient-like approximation methods for solving variational inequalities in Hilbert spaces. Our algorithms are based on Tseng's extragradient method, subgradient extragradient method, inertial method, hybrid projection method and shrinking projection method. Strong convergence theorems are established under appropriate conditions. Our results extend and improve some related results in the literature. In addition, the efficiency of our algorithms is shown through numerical examples which are defined by the hybrid projection methods.  相似文献   

12.
This article proposes a new extragradient solution method for strongly pseudomonotone variational inequalities. A detailed analysis of the iterative sequences’ convergence and of the range of applicability of the method is provided. Moreover, an interesting class of strongly pseudomonotone infinite dimensional variational inequality problems is considered.  相似文献   

13.
王宜举 《计算数学》2002,24(1):105-112
1.引 言 设C Rn为非空闭凸集,为连续映射.变分不等式问题,记为VI(F,C),是求满足上述条件的向量x∈C变分不等式问题在工程力学,交通运输,经济运筹等方面具有广泛的应用并越来越受到人们的重视 [2,3] 求解变分不等式问题有很多解法,其中最简单的是投影  相似文献   

14.
Some new classes of extended general nonconvex set-valued variational inequalities and the extended general Wiener-Hopf inclusions are introduced. By the projection technique, equivalence between the extended general nonconvex set-valued variational inequalities and the fixed point problems as well as the extended general nonconvex Wiener-Hopf inclusions is proved. Then by using this equivalent formulation, we discuss the existence of solutions of the extended general nonconvex set-valued variational inequalities and construct some new perturbed finite step projection iterative algorithms with mixed errors for approximating the solutions of the extended general nonconvex set-valued variational inequalities. We also verify that the approximate solutions obtained by our algorithms converge to the solutions of the extended general nonconvex set-valued variational inequalities. The results presented in this paper extend and improve some known results from the literature.  相似文献   

15.
This paper points out some fatal errors in the equivalent formulations used in Noor 2011 [Noor MA. Projection iterative methods for solving some systems of general nonconvex variational inequalities. Applied Analysis. 2011;90:777–786] and consequently in Noor 2009 [Noor MA. System of nonconvex variational inequalities. Journal of Advanced Research Optimization. 2009;1:1–10], Noor 2010 [Noor MA, Noor KI. New system of general nonconvex variational inequalities. Applied Mathematics E-Notes. 2010;10:76–85] and Wen 2010 [Wen DJ. Projection methods for a generalized system of nonconvex variational inequalities with different nonlinear operators. Nonlinear Analysis. 2010;73:2292–2297]. Since these equivalent formulations are the main tools to suggest iterative algorithms and to establish the convergence results, the algorithms and results in the aforementioned articles are not valid. It is shown by given some examples. To overcome with the problems in these papers, we consider a new system of extended regularized nonconvex variational inequalities, and establish the existence and uniqueness result for a solution of the aforesaid system. We suggest and analyse a new projection iterative algorithm to compute the unique solution of the system of extended regularized nonconvex variational inequalities which is also a fixed point of a nearly uniformly Lipschitzian mapping. Furthermore, the convergence analysis of the proposed iterative algorithm under some suitable conditions is studied. As a consequence, we point out that one can derive the correct version of the algorithms and results presented in the above mentioned papers.  相似文献   

16.
近似邻近点算法是求解单调变分不等式的一个有效方法,该算法通过解决一系列强单调子问题,产生近似邻近点序列来逼近变分不等式的解,而外梯度算法则通过每次迭代中增加一个投影来克服一般投影算法限制太强的缺点,但它们均未能改变迭代步骤中不规则闭凸区域上投影难计算的问题.于是,本文结合外梯度算法的迭代格式,构造包含原投影区域的半空间,将投影建立在半空间上,简化了投影的求解过程,并对新的邻近点序列作相应限制,使得改进的算法具有较好的收敛性.  相似文献   

17.
In this paper we consider an extragradient method for solving variational inequalities and related problems. On each iteration this method makes two trial steps along the gradient, and the value of the gradient at the second point is used at the first point as the iteration direction. We prove the convergence of this method in a general case. For problems with a bilinear functional we prove the geometric convergence rate.  相似文献   

18.
This paper concerns developing two hybrid proximal point methods (PPMs) for finding a common solution of some optimization-related problems. First we construct an algorithm to solve simultaneously an equilibrium problem and a variational inequality problem, combing the extragradient method for variational inequalities with an approximate PPM for equilibrium problems. Next we develop another algorithm based on an alternate approximate PPM for finding a common solution of two different equilibrium problems. We prove the global convergence of both algorithms under pseudomonotonicity assumptions.  相似文献   

19.
In this paper, we introduce an iterative scheme by the hybrid methods for finding a common element of the set of fixed points of nonexpansive mappings, the set of solutions of an equilibrium problem and the set of solutions of a variational inequality problem in a Hilbert space. Then, we prove the strongly convergent theorem by a hybrid extragradient method to the common element of the set of fixed points of nonexpansive mappings, the set of solutions of an equilibrium problem and the set of solutions of a variational inequality problem. Our results extend and improve the results of Bnouhachem et al. [A. Bnouhachem, M. Aslam Noor, Z. Hao, Some new extragradient iterative methods for variational inequalities, Nonlinear Analysis (2008) doi:10.1016/j.na.2008.02.014] and many others.  相似文献   

20.
In this paper, we investigate the problem for finding the set of solutions for equilibrium problems, the set of solutions of the variational inequalities for k-Lipschitz continuous mappings and fixed point problems for nonexpansive mappings in a Hilbert space. We introduce a new viscosity extragradient approximation method which is based on the so-called viscosity approximation method and extragradient method. We show that the sequence converges strongly to a common element of the above three sets under some parameters controlling conditions. Finally, we utilize our results to study some convergence problems for finding the zeros of maximal monotone operators. Our results are generalization and extension of the results of Kumam [P. Kumam, Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space, Turk. J. Math. 33 (2009) 85–98], Wangkeeree [R. Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Fixed Point Theory and Applications, 2008, Article ID 134148, 17 pages, doi:10.1155/2008/134148], Yao et al. [Y. Yao, Y.C. Liou, R. Chen, A general iterative method for an finite family of nonexpansive mappings, Nonlinear Analysis 69 (5–6) (2008) 1644–1654], Qin et al. [X. Qin, M. Shang, Y. Su, A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear Analysis (69) (2008) 3897–3909], and many others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号