首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we consider the n-term linear fractional-order differential equation with constant coefficients and obtain the solution of this kind of fractional differential equations by Adomian decomposition method. With the equivalent transmutation, we show that the solution by Adomian decomposition method is the same as the solution by the Green's function. Finally, we illustrate our result with some examples.  相似文献   

2.
Analogous to the nonlinear complementarity problem and the semi-definite complementarity problem, a popular approach to solving the second-order cone complementarity problem (SOCCP) is to reformulate it as an unconstrained minimization of a certain merit function over RnRn. In this paper, we present a descent method for solving the unconstrained minimization reformulation of the SOCCP which is based on the Fischer–Burmeister merit function (FBMF) associated with second-order cone [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327], and prove its global convergence. Particularly, we compare the numerical performance of the method for the symmetric affine SOCCP generated randomly with the FBMF approach [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Programming 104 (2005) 293–327]. The comparison results indicate that, if a scaling strategy is imposed on the test problem, the descent method proposed is comparable with the merit function approach in the CPU time for solving test problems although the former may require more function evaluations.  相似文献   

3.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A:VV and A:VV that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let (resp. ) denote a basis for V referred to in (i) (resp. (ii)). We show that there exists a unique linear transformation S:VV that sends v0 to a scalar multiple of vd, fixes w0, and sends wi to a scalar multiple of wi for 1?i?d. We call S the switching element. We describe S from many points of view.  相似文献   

4.
Let V denote a vector space with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let X denote the set of linear transformations X : V → V such that the matrix representing X with respect to the basis (i) is tridiagonal and the matrix representing X with respect to the basis (ii) is tridiagonal. We show that X is spanned by
  相似文献   

5.
Cauchy problem for fractional diffusion equations   总被引:4,自引:0,他引:4  
We consider an evolution equation with the regularized fractional derivative of an order α∈(0,1) with respect to the time variable, and a uniformly elliptic operator with variable coefficients acting in the spatial variables. Such equations describe diffusion on inhomogeneous fractals. A fundamental solution of the Cauchy problem is constructed and investigated.  相似文献   

6.
Given {Pn}n≥0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., 
  相似文献   

7.
Let K denote a field and let V denote a vector space over K with finite positive dimension.We consider a pair of K-linear transformations A:VV and A:VV that satisfy the following conditions: (i) each of A,A is diagonalizable; (ii) there exists an ordering of the eigenspaces of A such that AViVi-1+Vi+Vi+1 for 0?i?d, where V-1=0 and Vd+1=0; (iii) there exists an ordering of the eigenspaces of A such that for 0?i?δ, where and ; (iv) there is no subspace W of V such that AWW,AWW,W≠0,WV.We call such a pair a tridiagonal pair on V. It is known that d=δ and for 0?i?d the dimensions of coincide.In this paper we show that the following (i)-(iv) hold provided that K is algebraically closed: (i) Each of has dimension 1.(ii) There exists a nondegenerate symmetric bilinear form 〈,〉 on V such that 〈Au,v〉=〈u,Av〉 and 〈Au,v〉=〈u,Av〉 for all u,vV.(iii) There exists a unique anti-automorphism of End(V) that fixes each of A,A.(iv) The pair A,A is determined up to isomorphism by the data , where θi (resp.) is the eigenvalue of A (resp.A) on Vi (resp.), and is the split sequence of A,A corresponding to and .  相似文献   

8.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. We consider a pair of linear transformations A : V → V and A : V → V that satisfy (i) and (ii) below:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
We call such a pair a Leonard pair on V. Let diag(θ0θ1, … , θd) denote the diagonal matrix referred to in (ii) above and let denote the diagonal matrix referred to in (i) above. It is known that there exists a basis u0u1, … , ud for V and there exist scalars ?1?2, … , ?d in K such that Aui = θiui + ui+1 (0 ? i ? d − 1), Aud = θdud, , . The sequence ?1?2, … , ?d is called the first split sequence of the Leonard pair. It is known that there exists a basis v0v1, … , vd for V and there exist scalars ?1?2, … , ?d in K such that Avi = θdivi + vi+1 (0 ? i ? d − 1),Avd = θ0vd, , . The sequence ?1?2, … , ?d is called the second split sequence of the Leonard pair. We display some attractive formulae for the first and second split sequence that involve the trace function.  相似文献   

9.
Let K denote a field, and let V denote a vector space over K with finite positive dimension. By a Leonard pair on V we mean an ordered pair of linear transformations A : V → V and A : V → V that satisfy the following two conditions:
(i)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
(ii)
There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing A is diagonal.
Let (respectively v0v1, … , vd) denote a basis for V that satisfies (i) (respectively (ii)). For 0 ? i ? d, let ai denote the coefficient of , when we write as a linear combination of , and let denote the coefficient of vi, when we write Avi as a linear combination of v0v1, … , vd.In this paper we show a0 = ad if and only if . Moreover we show that for d ? 1 the following are equivalent; (i) a0 = ad and a1 = ad−1; (ii) and ; (iii) ai = adi and for 0 ? i ? d. These give a proof of a conjecture by the second author. We say A, A is balanced whenever ai = adi and for 0 ? i ? d. We say A,A is essentially bipartite (respectively essentially dual bipartite) whenever ai (respectively ) is independent of i for 0 ? i ? d. Observe that if A, A is essentially bipartite or dual bipartite, then A, A is balanced. For d ≠ 2, we show that if A, A is balanced then A, A is essentially bipartite or dual bipartite.  相似文献   

10.
Let V denote a vector space with finite positive dimension, and let (AA) denote a Leonard pair on V. As is known, the linear transformations A, A satisfy the Askey-Wilson relations
  相似文献   

11.
The pair of groups, complex reflection group G(r,1,n) and symmetric group Sn, is a Gelfand pair. Its zonal spherical functions are expressed in terms of multivariate hypergeometric functions called (n+1,m+1)-hypergeometric functions. Since the zonal spherical functions have orthogonality, they form discrete orthogonal polynomials. Also shown is a relation between monomial symmetric functions and the (n+1,m+1)-hypergeometric functions.  相似文献   

12.
We investigate the profile of the blowing-up solutions to the nonlinear nonlocal system (FDS):
  相似文献   

13.
It is known that if (A,A*) is a Leonard pair, then the linear transformations A, A* satisfy the Askey-Wilson relations
  相似文献   

14.
Summary In this article we continue our study of the following problem posed by Lawrence Zalcman in 1972. LetS be the closed unit square. For eachz in the interior,S 0, ofS letS(z) be the largest closed square inS with centroidz, and for each in the interval (0, 1] letS (z) be the square homothetic toS(z) with linear ratio . Iff is a continuous function such that its integral overS (z) vanishes for allz in S0, is f =0? We show that the answer is yes if 3/4 < 1.  相似文献   

15.
We study interlacing properties of the zeros of two types of linear combinations of Laguerre polynomials with different parameters, namely and . Proofs and numerical counterexamples are given in situations where the zeros of Rn, and Sn, respectively, interlace (or do not in general) with the zeros of , , k=n or n−1. The results we prove hold for continuous, as well as integral, shifts of the parameter α.  相似文献   

16.
Fractional differential equations are increasingly used to model problems in acoustics and thermal systems, rheology and modelling of materials and mechanical systems, signal processing and systems identification, control and robotics, and other areas of application. This paper further analyses the underlying structure of fractional differential equations. From a new point of view, we apprehend the short memory principle of fractional calculus and farther apply a Adams-type predictor–corrector approach for the numerical solution of fractional differential equation. And the detailed error analysis is presented. Combining the short memory principle and the predictor–corrector approach, we gain a good numerical approximation of the true solution of fractional differential equation at reasonable computational cost. A numerical example is provided and compared with the exact analytical solution for illustrating the effectiveness of the short memory principle.  相似文献   

17.
Formulas are derived for the probability density function and the probability distribution function of the largest canonical angle between two p-dimensional subspaces of Rn chosen from the uniform distribution on the Grassmann manifold (which is the unique distribution invariant by orthogonal transformations of Rn). The formulas involve the gamma function and the hypergeometric function of a matrix argument.  相似文献   

18.
We derive representations for certain entire q-functions and apply our technique to the Ramanujan entire function (or q-Airy function) and q-Bessel functions. This is used to show that the asymptotic series of the large zeros of the Ramanujan entire function and similar functions are also convergent series. The idea is to show that the zeros of the functions under consideration satisfy a nonlinear integral equation.  相似文献   

19.
Let Σ be a σ-algebra of subsets of a non-empty set Ω. Let X be a real Banach space and let X* stand for the Banach dual of X. Let B(Σ, X) be the Banach space of Σ-totally measurable functions f: Ω → X, and let B(Σ, X)* and B(Σ, X)** denote the Banach dual and the Banach bidual of B(Σ, X) respectively. Let bvca(Σ, X*) denote the Banach space of all countably additive vector measures ν: Σ → X* of bounded variation. We prove a form of generalized Vitali-Hahn-Saks theorem saying that relative σ(bvca(Σ, X*), B(Σ, X))-sequential compactness in bvca(Σ, X*) implies uniform countable additivity. We derive that if X reflexive, then every relatively σ(B(Σ, X)*, B(Σ, X))-sequentially compact subset of B(Σ, X)c~ (= the σ-order continuous dual of B(Σ, X)) is relatively σ(B(Σ, X)*, B(Σ, X)**)-sequentially compact. As a consequence, we obtain a Grothendieck type theorem saying that σ(B(Σ, X)*, B(Σ, X))-convergent sequences in B(Σ, X)c~ are σ(B(Σ, X)*, B(Σ, X)**)-convergent.  相似文献   

20.
In the present paper we deal with the polynomials Ln(α,M,N) (x) orthogonal with respect to the Sobolev inner product
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号