首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There are few optimal fourth-order methods for solving nonlinear equations when the multiplicity m of the required root is known in advance. Therefore, the principle focus of this paper is on developing a new fourth-order optimal family of iterative methods. From the computational point of view, the conjugacy maps and the strange fixed points of some iterative methods are discussed, their basins of attractions are also given to show their dynamical behavior around the multiple roots. Further, using Mathematica with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm the theoretical development.  相似文献   

2.
Based on quadratically convergent Schröder’s method, we derive many new interesting families of fourth-order multipoint iterative methods without memory for obtaining simple roots of nonlinear equations by using the weight function approach. The classical King’s family of fourth-order methods and Traub-Ostrowski’s method are obtained as special cases. According to the Kung-Traub conjecture, these methods have the maximal efficiency index because only three functional values are needed per step. Therefore, the fourth-order family of King’s family and Traub-Ostrowski’smethod are the main findings of the present work. The performance of proposed multipoint methods is compared with their closest competitors, namely, King’s family, Traub-Ostrowski’s method, and Jarratt’s method in a series of numerical experiments. All the methods considered here are found to be effective and comparable to the similar robust methods available in the literature.  相似文献   

3.
Newton-Raphson method has always remained as the widely used method for finding simple and multiple roots of nonlinear equations. In the past years, many new methods have been introduced for finding multiple zeros that involve the use of weight function in the second step, thereby, increasing the order of convergence and giving a flexibility to generate a family of methods satisfying some underlying conditions. However, in almost all the schemes developed over the past, the usual way is to use Newton-type method at the first step. In this paper, we present a new two-step optimal fourth-order family of methods for multiple roots (m > 1). The proposed iterative family has the flexibility of choice at both steps. The development of the scheme is based on using weight functions. The first step can not only recapture Newton's method for multiple roots as special case but is also capable of defining new choices of first step. A stability analysis of some particular cases is also given to explain the dynamical behavior of the new methods around the multiple roots and decide the best values of the free parameters involved. Finally, we compare our methods with the existing schemes of the same order with a real life application as well as standard test problems. From the numerical results, we find that our methods can be considered as a better alternative for the existing procedures of same order.  相似文献   

4.
一类四阶牛顿变形方法   总被引:1,自引:0,他引:1  
给出非线性方程求根的一类四阶方法,也是牛顿法的变形方法.证明了方法收敛性,它们至少四次收敛到单根,线性收敛到重根.文末给出数值试验,且与牛顿法及其它牛顿变形法做了比较.结果表明方法具有很好的优越性,它丰富了非线性方程求根的方法,在理论上和应用上都有一定的价值.  相似文献   

5.
一个四阶收敛的牛顿类方法   总被引:2,自引:0,他引:2  
A fourth-order convergence method of solving roots for nonlinear equation,which is a variant of Newton's method given.Its convergence properties is proved.It is at least fourth-order convergence near simple roots and one order convergence near multiple roots. In the end,numerical tests are given and compared with other known Newton and Newtontype methods.The results show that the proposed method has some more advantages than others.It enriches the methods to find the roots of non-linear equations and it ...  相似文献   

6.
In this paper, we present a new fourth-order method for finding multiple roots of nonlinear equations. It requires one evaluation of the function and two of its first derivative per iteration. Finally, some numerical examples are given to show the performance of the presented method compared with some known third-order methods.  相似文献   

7.
We present a new third order method for finding multiple roots of nonlinear equations based on the scheme for simple roots developed by Kou et al. [J. Kou, Y. Li, X. Wang, A family of fourth-order methods for solving non-linear equations, Appl. Math. Comput. 188 (2007) 1031-1036]. Further investigation gives rise to new third and fourth order families of methods which do not require second derivative. The fourth order family has optimal order, since it requires three evaluations per step, namely one evaluation of function and two evaluations of first derivative. The efficacy is tested on a number of relevant numerical problems. Computational results ascertain that the present methods are competitive with other similar robust methods.  相似文献   

8.
In this paper, the estimations of error between the approximate solution and the solution for a fourth-order differential equation with retardation and anticipation are given by employing the quasilinear iterative scheme and the approximate quasilinear iterative scheme.  相似文献   

9.
We further present some semi-discrete modifications to the cubically convergent iterative methods derived by Kanwar and Tomar (Modified families of Newton, Halley and Chebyshev methods, Appl. Math. Comput. http://dx.doi.org/10.1016/j.amc.2007.02.119) and derived a number of interesting new classes of third-order multi-point iterative methods free from second derivatives. Furthermore, several functions have been tested and all the methods considered are found to be effective and compared to the well-known existing third and fourth-order multi-point iterative methods.   相似文献   

10.
In this paper, we use the variational iteration technique to suggest and analyze some new iterative methods for solving a system of nonlinear equations. We prove that the new method has fourth-order convergence. Several numerical examples are given to illustrate the efficiency and performance of the new iterative methods. Our results can be viewed as a refinement and improvement of the previously known results.  相似文献   

11.
In this work, we develop a new two-parameter family of iterative methods for solving nonlinear scalar equations. One of the parameters is defined through an infinite power series consisting of real coefficients while the other parameter is a real number. The methods of the family are fourth-order convergent and require only three evaluations during each iteration. It is shown that various fourth-order iterative methods in the published literature are special cases of the developed family. Convergence analysis shows that the methods of the family are fourth-order convergent which is also verified through the numerical work. Computations are performed to explore the efficiency of various methods of the family.  相似文献   

12.
Based on the fourth-order method of Liu et al. [10], eighth-order three-step iterative methods without memory, which are totally free from derivative calculation and reach the optimal efficiency index are presented. The extension of one of the methods for multiple zeros without the knowledge of multiplicity is presented. Further accelerations will be provided through the concept of with memory iteration methods. Moreover, it is shown by way of illustration that the novel methods are useful on a series of relevant numerical problems when high precision computing is required.  相似文献   

13.
We derive a fourth-order compact finite difference scheme for a two-dimensional elliptic problem with a mixed derivative and constant coefficients. We conduct experimental study on numerical solution of the problem discretized by the present compact scheme and the traditional second-order central difference scheme. We study the computed accuracy achieved by each scheme and the performance of the Gauss-Seidel iterative method, the preconditioned GMRES iterative method, and the multigrid method, for solving linear systems arising from the difference schemes.  相似文献   

14.
In this paper, based on some known fourth-order Steffensen type methods, we present a family of three-step seventh-order Steffensen type iterative methods for solving nonlinear equations and nonlinear systems. For nonlinear systems, a development of the inverse first-order divided difference operator for multivariable function is applied to prove the order of convergence of the new methods. Numerical experiments with comparison to some existing methods are provided to support the underlying theory.  相似文献   

15.
迭代根问题是动力系统嵌入流问题的弱问题,是动态插值方法的基础.然而,即使是对一维映射,迭代根的非单调性和全局光滑性都是困难的问题.本文介绍这方面的若干新结果,尤其是关于严格逐段单调连续函数的连续迭代根的存在性和构造,以及迭代根局部光滑与全局光滑的新进展.最后给出多项式迭代根这类既严格逐段单调又具光滑性的迭代根的存在条件及计算方法.  相似文献   

16.
Using the forms of Newton iterative function, the iterative function of Newton's method to handle the problem of multiple roots and the Halley iterative function, we give a class of iterative formulae for solving equations in one variable in this paper and show that their convergence order is at least quadratic. At last we employ our methods to solve some non-linear equations and compare them with Newton's method and Halley's method. Numerical results show that our iteration schemes are convergent if we choose two suitable parametric functions λ(x) and μ(x). Therefore, our iteration schemes are feasible and effective.  相似文献   

17.
In this paper, we present an improvement of the local order of convergence to increase the efficiency of some fourth-order iterative methods and the order can be improved from four to eight. Per iteration the present methods require three evaluations of the function and one evaluation of its first derivative and therefore have the efficiency index equal to 1.682. Numerical tests verifying the theory are given.  相似文献   

18.
A one-parameter family of derivative free multipoint iterative methods of orders three and four are derived for finding the simple and multiple roots off(x)=0. For simple roots, the third order methods require three function evaluations while the fourth order methods require four function evaluations. For multiple roots, the third order methods require six function evaluations while the fourth order methods require eight function evaluations. Numerical results show the robustness of these methods.  相似文献   

19.
A finite difference scheme for the two-dimensional, second-order, nonlinear elliptic equation is developed. The difference scheme is derived using the local solution of the differential equation. A 13-point stencil on a uniform mesh of size h is used to derive the finite difference scheme, which has a truncation error of order h4. Well-known iterative methods can be employed to solve the resulting system of equations. Numerical results are presented to demonstrate the fourth-order convergence of the scheme. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
In this paper, a family of fourth-order Steffensen-type two-step methods is constructed to make progress in including Ren-Wu-Bi’s methods [H. Ren, Q. Wu, W. Bi, A class of two-step Steffensen type methods with fourth-order convergence, Appl. Math. Comput. 209 (2009) 206-210] and Liu-Zheng-Zhao’s method [Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications, Appl. Math. Comput. 216 (2010) 1978-1983] as its special cases. Its error equation and asymptotic convergence constant are deduced. The family provides the opportunity to obtain derivative-free iterative methods varying in different rates and ranges of convergence. In the numerical examples, the family is not only compared with the related methods for solving nonlinear equations, but also applied in the solution of BVPs of nonlinear ODEs by the finite difference method and the multiple shooting method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号