首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we propose and analyze a spectral Jacobi-collocation method for the numerical solution of general linear fractional integro-differential equations. The fractional derivatives are described in the Caputo sense. First, we use some function and variable transformations to change the equation into a Volterra integral equation defined on the standard interval [-1,1][-1,1]. Then the Jacobi–Gauss points are used as collocation nodes and the Jacobi–Gauss quadrature formula is used to approximate the integral equation. Later, the convergence order of the proposed method is investigated in the infinity norm. Finally, some numerical results are given to demonstrate the effectiveness of the proposed method.  相似文献   

2.
In this paper, based on the homotopy analysis method (HAM), a powerful algorithm is developed for the solution of nonlinear ordinary differential equations of fractional order. The proposed algorithm presents the procedure of constructing the set of base functions and gives the high-order deformation equation in a simple form. Different from all other analytic methods, it provides us with a simple way to adjust and control the convergence region of solution series by introducing an auxiliary parameter ??. The analysis is accompanied by numerical examples. The algorithm described in this paper is expected to be further employed to solve similar nonlinear problems in fractional calculus.  相似文献   

3.
The aim of this article is to present an analytical approximation solution for linear and nonlinear multi-order fractional differential equations (FDEs) by extending the application of the shifted Chebyshev operational matrix. For this purpose, we convert FDE into a counterpart system and then using proposed method to solve the resultant system. Our results in solving four different linear and nonlinear FDE, confirm the accuracy of proposed method.  相似文献   

4.
In this paper, we apply the Jacobi collocation method for solving nonlinear fractional differential equations with integral boundary conditions. Due to existence of integral boundary conditions, after reformulation of this equation in the integral form, the method is proposed for solving the obtained integral equation. Also, the convergence and stability analysis of the proposed method are studied in two main theorems. Furthermore, the optimum degree of convergence in the L2 norm is obtained for this method. Furthermore, some numerical examples are presented in order to illustrate the performance of the presented method. Finally, an application of the model in control theory is introduced. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this article, we implement relatively new analytical techniques, the variational iteration method and the Adomian decomposition method, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in the Caputo sense. The two methods in applied mathematics can be used as alternative methods for obtaining analytic and approximate solutions for different types of fractional differential equations. In these schemes, the solution takes the form of a convergent series with easily computable components. Numerical results show that the two approaches are easy to implement and accurate when applied to partial differential equations of fractional order.  相似文献   

6.
In this paper, the predictor-corrector approach is used to propose two algorithms for the numerical solution of linear and non-linear fractional differential equations (FDE). The fractional order derivative is taken to be in the sense of Caputo and its properties are used to transform FDE into a Volterra-type integral equation. Simpson''s 3/8 rule is used to develop new numerical schemes to obtain the approximate solution of the integral equation associated with the given FDE. The error and stability analysis for the two methods are presented. The proposed methods are compared with the ones available in the literature. Numerical simulation is performed to demonstrate the validity and applicability of both the proposed techniques. As an application, the problem of dynamics of the new fractional order non-linear chaotic system introduced by Bhalekar and Daftardar-Gejji is investigated by means of the obtained numerical algorithms.  相似文献   

7.

In this paper, we study polynomial spline collocation methods applied to a particular class of integral-algebraic equations of Volterra type. We analyse mixed systems of second and first kind integral equations. Global convergence and local superconvergence results are established.

  相似文献   


8.
Adomian decomposition method has been employed to obtain solutions of a system of fractional differential equations. Convergence of the method has been discussed with some illustrative examples. In particular, for the initial value problem:
  相似文献   

9.
In some recent works dealing with the existence of solutions for impulsive fractional differential equations, it is pointed out that the concept of solutions for such equations in some preceding papers is incorrect. In support of this claim, the authors of these papers begin with a counterexample. The objective of this note to indicate the mistake in these counterexamples and show the plausibility of the previous results.  相似文献   

10.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

11.
A new class of fractional differential equations with the Riesz–Caputo derivative is proposed and the physical meaning is introduced in this paper. The boundary value problem is investigated under some conditions. Leray–Schauder and Krasnoselskii’s fixed point theorems in a cone are adopted. Existence of positive solutions is provided. Finally, two examples with numerical solutions are given to support theoretical results.  相似文献   

12.
In this paper a class of weakly singular Volterra integral equations with an infinite set of solutions is investigated. Among the set of solutions only one particular solution is smooth and all others are singular at the origin. The numerical solution of this class of equations has been a difficult topic to analyze and has received much previous investigation. The aim of this paper is to improve the convergence rates by a graded mesh method. The convergence rates are proved and a variety of numerical examples are provided to support the theoretical findings.  相似文献   

13.
In this paper viability results for nonlinear fractional differential equations with the Caputo derivative are proved. We give the sufficient condition that guarantees fractional viability of a locally closed set with respect to nonlinear function. As an example we discuss positivity of solutions, particularly in linear case.  相似文献   

14.
In this article, Haar wavelets have been employed to obtain solutions of boundary value problems for linear fractional partial differential equations. The differential equations are reduced to Sylvester matrix equations. The algorithm is novel in the sense that it effectively incorporates the aperiodic boundary conditions. Several examples with numerical simulations are provided to illustrate the simplicity and effectiveness of the method.  相似文献   

15.
Traditional methods for the numerical approximation of fractional derivatives have a number of drawbacks due to the non-local nature of the fractional differential operators. The main problems are the arithmetic complexity and the potentially high memory requirements when they are implemented on a computer. In a recent paper, Yuan and Agrawal have proposed an approach for operators of order α ∈ (0,1) that differs substantially from the standard methods. We extend the method to arbitrary α > 0, , and give an analysis of the main properties of this approach. In particular it turns out that the original algorithm converges rather slowly. Based on our analysis we are able to identify the source of this slow convergence and propose some modifications leading to a much more satisfactory behaviour. Similar results are obtained for a closely related method proposed by Chatterjee. Dedicated to Professor Paul L. Butzer on the occasion of his 80th birthday.  相似文献   

16.
17.
In this note we establish sufficient conditions for existence and uniqueness of solutions of terminal value problems for a class of fractional differential equations on infinite interval. Some illustrative examples are comprehended to demonstrate the proficiency and utility of our results.  相似文献   

18.
Our main concern here is to give a numerical scheme to solve a nonlinear multi-term fractional (arbitrary) orders differential equation.  相似文献   

19.
提出了一种新的求解第二类线性Volterra型积分方程的Chebyshev谱配置方法.该方法分别对方程中积分部分的核函数和未知函数在Chebyshev-Gauss-Lobatto点上进行插值,通过Chebyshev-Legendre变换,把插值多项式表示成Legendre级数形式,从而将积分转换为内积的形式,再利用Legendre多项式的正交性进行计算.利用Chebyshev插值算子在不带权范数意义下的逼近结果,对该方法在理论上给出了L∞范数意义下的误差估计,并通过数值算例验证了算法的有效性和理论分析的正确性.  相似文献   

20.
In this paper, we implement Chebyshev pseudo-spectral method for solving numerically system of linear and non-linear fractional integro-differential equations of Volterra type. The proposed technique is based on the new derived formula of the Caputo fractional derivative. The suggested method reduces this type of systems to the solution of system of linear or non-linear algebraic equations. We give the convergence analysis and derive an upper bound of the error for the derived formula. To demonstrate the validity and applicability of the suggested method, some test examples are given. Also, we present a comparison with the previous work using the homotopy perturbation method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号