首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the properties of the heat flow generated by electric current in a quantum dot(QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization.Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads.  相似文献   

2.
We study the properties of the heat flow generated by electric current in a quantum dot (QD) molecular sandwiched between two ferromagnetic leads. The heat is exchanged between the QD and the phonon reservoir coupled to it. We find that when the leads' magnetic moments are in parallel configuration, the total heat generation is independent on the leads' spin-polarization regardless of the magnitude of the intradot Coulomb interaction. This behavior is similar to that of the electronic current. In the antiparallel configuration, however, the influences of the leads' ferromagnetism on the heat generation are quite different from those on the electric current. Under the conditions of weak intradot Coulomb interaction and small bias voltage, the heat generation is monotonously suppressed by increasing leads' spin-polarization. Whereas for sufficient large intradot Coulomb interaction and bias voltage, the heat generation shows non-monotonous behavior due to the electron-phonon interaction and the spin accumulation induced on the dot. Furthermore, the magnitude of the negative differential of the heat generation previously found in a QD connected to nonmagnetic leads can be weakened by the increase of the spin-polarization of the ferromagnetic leads.  相似文献   

3.
We investigate the unique properties of current-induced heat generation in nanojunctions,such as failed Q α I relation(where Q is the heat generation and I the current),threshold voltage required to generate heat,etc.By employing the lead-quantum dot(QD)-lead system,we find these unique properties stem from(i) the discontinuity of Fermi distribution at chemical potentials of the leads and(ii) the satellite peaks in spectral function of the QD electron,which are induced by the electron-phonon interaction.  相似文献   

4.
We investigate the heat generation in a quantum dot (QD) coupled to two normal leads with different temperatures. It is found that heat in the QD can be conducted efficiently away through electron–phonon interaction in the QD when the QD is coupled stronger to colder lead than to the hotter one. As temperature of the colder lead is close to zero, the current through the QD peaks at the very QD level position, where the heat generation is zero, which helps to keep the stability of a working nanodevice. Then an ideal condition for nanodevice operation can be found.  相似文献   

5.
白旭芳  迟锋  郑军  李亦楠 《中国物理 B》2012,21(7):77301-077301
We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of an electric bias and a magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads’ spin polarization and the asymmetry of the dot-lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.  相似文献   

6.
Heat current exchanged between a two-level quantum dot (QD) and a phonon reservoir coupled to it is studied within the nonequilibrium Green's function method. We consider that the QD is connected to the left and right ferromagnetic leads. It is found that the negative differential of the heat generation (NDHG) phenomenon, i.e., the intensity of the heat generation decreases with increasing bias voltage, is obviously enhanced as compared to that in single-level QD system. The NDHG can emerge in the absence of the negative differential conductance of the electric current, and occurs in different bias voltage regions when the magnetic moments of the two leads are arranged in parallel or antiparallel configurations. The characteristics of the found phenomena can be understood by examining the change of the electron number on the dot.  相似文献   

7.
Heat current exchanged between a two-level quantum dot(QD) and a phonon reservoir coupled to it is studied within the nonequilibrium Green's function method. We consider that the QD is connected to the left and right ferromagnetic leads. It is found that the negative differential of the heat generation(NDHG) phenomenon,i.e.,the intensity of the heat generation decreases with increasing bias voltage,is obviously enhanced as compared to that in single-level QD system. The NDHG can emerge in the absence of the negative differential conductance of the electric current,and occurs in different bias voltage regions when the magnetic moments of the two leads are arranged in parallel or antiparallel configurations. The characteristics of the found phenomena can be understood by examining the change of the electron number on the dot.  相似文献   

8.
By applying a local Rashba spin–orbit interaction to an individual quantum dot of a four-terminal four-quantum-dot ring and introducing a finite bias between the longitudinal terminals, we theoretically investigate the charge and spin currents in the transverse terminals. It is found that when the quantum dot levels are separate from the chemical potentials of the transverse terminals, notable pure spin currents appear in the transverse terminals with the same amplitude but opposite polarization directions. In addition, the polarization directions of such pure spin currents can be inverted by altering the structure parameters, i.e., the magnetic flux, the bias voltage, and the values of quantum dot levels with respect to the chemical potentials of the transverse terminals.  相似文献   

9.
We present an entanglement analysis protocol on entangled electron spins using quantum dot (QD) and microcavity coupled system. Each quantum dot is placed in the microcavity and ancilla photon input-output process could be used to check the parity of the quantum dots. After the parity check process, the user only needs to measure the spin direction of the QD spin, and the state information can be readout completely. The feasibility of our scheme and the experimental challenge are discussed by considering currently available techniques.  相似文献   

10.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

11.
Nonequilibrium electron and spin transport properties in a parallel double quantum dot (QD) Fano interferometer are theoretically studied. With the shift of gate voltage around the chemical potential of either lead, we find the Fano lineshapes in the differential conductance spectra, which is sensitively determined by the bias voltage strength and appropriate QD level distributions. The intradot Coulomb interactions modulate the Fano interference in a substantial way and can induce the emergence of negative differential conductance, because of its nontrivial role in splitting the QD levels. In the presence of a local Rashba spin-orbit coupling, the interplay between the magnetic and Rashba fields induces the occurrence of the nonequilibrium spin-related Fano interference, different from the linear-transport results. Furthermore, the striking Coulomb-driven spin accumulation in the ‘resonant-channel’ QD appears.  相似文献   

12.
We report experiments on the interference through spin states of electrons in a quantum dot (QD) embedded in an Aharonov-Bohm (AB) interferometer. We have picked up a spin-pair state, for which the environmental conditions are ideally similar. The AB amplitude is traced in a range of gate voltage that covers the pair. The behavior of the asymmetry in the amplitude around the two Coulomb peaks agrees with the theoretical prediction that the spin-flip process in a QD is related to the quantum dephasing of electrons. These results constitute evidence of "partial coherence" due to an entanglement of spins in the QD and in the interferometer.  相似文献   

13.
Kondo correlation in a spin polarized quantum dot (QD) results from the dynamical formation of a spin singlet between the dot's net spin and a Kondo cloud of electrons in the leads, leading to enhanced coherent transport through the QD. We demonstrate here significant dephasing of such transport by coupling the QD and its leads to potential fluctuations in a nearby "potential detector." The qualitative dephasing is similar to that of a QD in the Coulomb blockade regime in spite of the fact that the mechanism of transport is quite different. A much stronger than expected suppression of coherent transport is measured, suggesting that dephasing is induced mostly in the "Kondo cloud" of electrons within the leads and not in the QD.  相似文献   

14.
迟锋  刘黎明  孙连亮 《中国物理 B》2017,26(3):37304-037304
Spin-polarized current generated by thermal bias across a system composed of a quantum dot(QD) connected to metallic leads is studied in the presence of magnetic and photon fields. The current of a certain spin orientation vanishes when the dot level is aligned to the lead's chemical potential, resulting in a 100% spin-polarized current. The spin-resolved current also changes its sign at the two sides of the zero points. By tuning the system's parameters, spin-up and spin-down currents with equal strength may flow in opposite directions, which induces a pure spin current without the accompany of charge current. With the help of the thermal bias, both the strength and the direction of the spin-polarized current can be manipulated by tuning either the frequency or the intensity of the photon field, which is beyond the reach of the usual electric bias voltage.  相似文献   

15.
We study the energy spectra of a two-dimensional two-electron quantum dot (QD) with Pöschl-Teller confining potential under the influence of perpendicular homogeneous magnetic field. Calculations are made by using the method of numerical diagonalization of Hamiltonian matrix within the effective-mass approximation. A ground-state behavior (spin singlet-triplet transitions) as a function of the strength of a magnetic field is found. We find that the dot radius R of a Pöschl-Teller potential is important for the ground-state transition and the feature of ground-state for a Pöschl-Teller QD and a parabolic QD is similar when R is larger. The larger the well depth, the higher the magnetic field for the singlet-triplet transition of the ground-state of two interacting electrons in a Pöschl-Teller QD.  相似文献   

16.
We report on direct measurement of charge and its distribution in a Kondo correlated quantum dot (QD). A noninvasive potential-sensitive detector, in proximity with a QD, reveals that, although the conductance of the QD is significantly enhanced as it enters the Kondo regime, the average charge remains unaffected. This demonstrates the separation between spin and charge degrees of freedom. We find, however, under certain conditions, an abrupt redistribution of charge in the QD, taking place with an onset of Kondo correlation. This suggests a correlation between the spin and charge degrees of freedom.  相似文献   

17.
For circular quantum dot (QD), taking into account the Razhba spin-orbit interaction (SOI), an exact energy spectrum is obtained. For a small SOI constant, the eigenfunctions of the QD are found. It is shown that the application of a radiation field with circular polarization removes the Kramers degeneracy of the QD eigenstates. Effective spin polarization of electrons transmitted through the QD owing to a radiation field with circular polarization is demonstrated.  相似文献   

18.
The effect of elastic anisotropy on the strain fields and confinement potentials in InAs/GaAs quantum dot (QD) nanostructures was investigated for an isolated dot and a stacked multi-layer dots using finite element analysis and model solid theory. The assumption of isotropy tends to underestimate especially hydrostatic strain that is known to modify confinement potentials in conduction band. Consideration of anisotropy results in a wider band gap and shallower potential well as compared with the isotropic model. Since the band gap and potential well depth would be related to opto-electronic properties of quantum dot systems via quantum mechanical effects, it is suggested that consideration of elastic anisotropy in the calculation of strains and band structures is necessary for the design of QD-based opto-electronic devices.  相似文献   

19.
《中国物理 B》2021,30(10):100302-100302
The spin transport properties are theoretically investigated when a quantum dot(QD) is side-coupled to Majorana bound states(MBSs) driven by a symmetric dipolar spin battery. It is found that MBSs have a great effect on spin transport properties. The peak-to-valley ratio of the spin current decreases as the coupling strength between the MBS and the QD increases. Moreover, a non-zero charge current with two resonance peaks appears in the system. In the extreme case where the dot–MBS coupling strength is strong enough, the spin current and the charge current are both constants in the non-resonance peak range. When considering the effect of the Zeeman energy, it is interesting that the resonance peak at the higher energy appears one shoulder. And the shoulder turns into a peak when the Zeeman energy is big enough. In addition, the coupling strength between the two MBSs weakens their effects on the currents of the system. These results are helpful for understanding the MBSs signature in the transport spectra.  相似文献   

20.
The pure spin transport in an entire metallic single-wall carbon-nanotube (SWCN) interacting quantum dot (QD) system is investigated by using non-equilibrium Green's function (NEGF) technique. The novel spin current performance introduced by one constant and one rotating magnetic fields shows the unique four-fold degenerate electron shell structure which exists the SWCN QD sensitively. Spin transport properties can be designed by tuning the orbital and Zeeman configuration in the central resonant region, which are greatly influenced by the Coulomb interaction and the magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号