首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LE<-->ICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and MeCN resembles that of DMABN in MeCN, likewise indicating a similar ICT structure for NTC6 and DMABN. From the decay of the LE absorption and the corresponding growing-in for the ICT state of NTC6, it is concluded that the ICT state originates from the LE precursor and is not formed by direct excitation from S0, nor via an S2/ICT conical intersection. The same conclusion was made from the time-resolved (picosecond) fluorescence spectra, where there is no ICT emission at time zero. The decay of the LE(ESA) band of NTC6 in n-hexane occurs with a shortest time tau2 of 2.2 ps. The ICT reaction is much faster (tau2 = 0.82 ps) in the strongly polar MeCN. The absence of excitation wavelength dependence (290 and 266 nm) for the ESA spectra in MeCN also shows that LE is the ICT precursor. With NIC6 in n-hexane and MeCN, a decay or growing-in of the femtosecond ESA spectra is not observed, in line with the absence of an ICT reaction involving an S2/ICT conical intersection.  相似文献   

2.
The excited state behavior of the six m,n-dicyano-N,N-dimethylanilines (mnDCDMA) and m,n-dicyano-(N-methyl-N-isopropyl)anilines (mnDCMIA) is discussed as a function of solvent polarity and temperature. The dicyano moiety in these electron donor (D)/acceptor (A) molecules has a considerably larger electron affinity than the benzonitrile subgroup in 4-(dimethylamino)benzonitrile (DMABN). Nevertheless, the fluorescence spectra of the mnDCDMAs and mnDCMIAs in n-hexane all consist of a single emission originating from the locally excited (LE) state, indicating that a reaction from LE to an intramolecular charge transfer (ICT) state does not take place. The calculated energies E(ICT), obtained by employing the reduction potential of the dicyanobenzene subgroups and the oxidation potential of the amino substituents trimethylamine (N(Me)(3)) and isopropyldimethylamine (iPrNMe(2)), are lower than E(LE). The absence of an LE → ICT reaction therefore makes clear that the D and A units in the dicyanoanilines are not electronically decoupled. In the polar solvent acetonitrile (MeCN), dual (LE + ICT) fluorescence is found with 24DCDMA and 34DCDMA, as well as with 24DCMIA, 25DCMIA, and 34DCMIA. For all other mnDCDMAs and mnDCMIAs, only LE emission is observed in MeCN. The ICT/LE fluorescence quantum yield ratio Φ'(ICT)/Φ(LE) in MeCN at 25 °C is larger for 24DCDMA (1.2) than for 34DCDMA (0.35). The replacement of methyl by isopropyl in the amino substituent leads to a considerable increase of Φ'(ICT)/Φ(LE), 8.8 for 24DCMIA and 1.4 for 34DCMIA, showing that the LE ? ICT equilibrium has shifted further toward ICT. The appearance of an ICT reaction with the 2,4- and 3,4-dicyanoanilines is caused by a relatively small energy gap ΔE(S(1),S(2)) between the two lowest excited singlet states as compared with the other m,n-dicyanoanilines, in accordance with the PICT model. The observation that the ICT reaction is more efficient for 24DCMIA and 34DCMIA than for their mnDCDMA counterparts is mainly caused by the fact that iPrNMe(2) is a better electron donor than N(Me)(3): E(D/D(+)) = 0.84 against 1.05 V vs SCE. That ICT also occurs with 25DCMIA, notwithstanding its large ΔE(S(1),S(2)), is due to the substantial amino twist angle θ = 42.6°, which leads to partial electronic decoupling of the D and A subgroups. The dipole moments μ(e)(ICT) range between 18 D for 34DCMIA and 12 D for 25DCMIA, larger than the corresponding μ(e)(LE) of 16 and 11 D. The difference between μ(e)(ICT) and μ(e)(LE) is smaller than with DMABN (17 and 10 D) because of the noncollinear arrangement of the amino and cyano substituents (different dipole moment directions). The dicyanoanilines that do not undergo ICT, have LE dipole moments between 9 and 16 D. From plots of ln(Φ'(ICT)/Φ(LE)) vs 1000/T, the (rather small) ICT reaction enthalpies ΔH could be measured in MeCN: 5.4 kJ/mol (24DCDMA), 4.7 kJ/mol (24DCMIA), and 3.9 kJ/mol (34DCMIA). With the mnDCDMAs and mnDCMIAs only showing LE emission, the fluorescence decays are single exponential, whereas for those undergoing an LE → ICT reaction the LE and ICT picosecond fluorescence decays are double exponential. In MeCN at 25 °C, the decay times τ(2) have values between 1.8 ps for 24DCMIA and 4.6 ps for 34DCMIA at 25 °C. Longer times are observed at lower temperatures. Arrhenius plots of the forward and backward ICT rate constants k(a) and k(d) of 25DCMIA in tetrahydrofuran, obtained from the LE and ICT fluorescence decays, give the activation energies E(a) = 4.5 kJ/mol and E(d) = 11.9 kJ/mol, i.e., ΔH = -7.4 kJ/mol. From femtosecond transient absorption spectra of 24DCDMA and 34DCDMA at 22 °C, ICT reaction times τ(2) = 1/(k(a) + k(d)) of 1.8 and 3.1 ps are determined. By combining these results with the data for the fluorescence decays and Φ'(ICT)/Φ(LE), the values k(a) = 49 × 10(10) s(-1) (24DCDMA) and k(a) = 23 × 10(10) s(-1) (34DCDMA) are calculated. An LE and ICT excited state absorption is present even at a pump/probe delay time of 100 ps, showing that an LE ? ICT equilibrium is established.  相似文献   

3.
The kinetics of the intramolecular charge-transfer (ICT) reaction of 4-(dimethylamino)benzonitrile (DMABN) in the polar solvent acetonitrile (MeCN) is investigated by fluorescence quantum yield and picosecond time-correlated single photon counting (SPC) experiments over the temperature range from -45 to +75 degrees C, together with femtosecond Sn <-- S1 transient absorption measurements at room temperature. For DMABN in MeCN, the fluorescence from the locally excited (LE) state is strongly quenched, with an unquenched to quenched fluorescence quantum yield ratio of 290 at 25 degrees C. Under these conditions, even very small amounts of the photoproduct 4-(methylamino)benzonitrile (MABN) severely interfere, as the LE fluorescence of MABN is in the same spectral range as that of DMABN. The influence of photoproduct formation could be overcome by a simultaneous analysis of the picosecond and photostationary measurements, resulting in data for the activation barriers Ea (5 kJ/mol) and Ed (32 kJ/mol) of the forward and backward ICT reaction as well as the ICT reaction enthalpy and entropy: DeltaH (-27 kJ/mol) and DeltaS [-38 J/(mol K)]. The reaction hence takes place over a barrier, with double-exponential fluorescence decays, as to be expected in a two-state reaction. From femtosecond transient absorption down to 200 fs, the LE and ICT excited state absorption (ESA) spectra of DMABN in n-hexane (LE) and in MeCN (LE and ICT) and also of 4-aminobenzonitrile in MeCN (LE) are obtained. For DMABN in MeCN, the quenching of the LE and the rise of the ICT ESA bands occurs with a single characteristic time of 4.1 ps, the same as the ICT reaction time found from the picosecond SPC experiments at 25 degrees C. The sharp ICT peak at 320 nm does not change its spectral position after a pump-probe delay time of 200 fs, which suggests that large amplitude motions do not take place after this time. The increase with time in signal intensity observed for the LE spectrum of DMABN in n-hexane between 730 and 770 nm, is attributed to solvent cooling of the excess excitation energy and not to an inverse ICT --> LE reaction, as reported in the literature.  相似文献   

4.
The newly synthesized aminobenzonitriles with two bulky amino substituents 4-(di-tert-butylamino)benzonitrile (DTABN) and 3-(di-tert-butylamino)benzonitrile (mDTABN) have strongly twisted amino groups in the ground state. From X-ray crystal analysis it is found that the amino twist angle theta of mDTABN equals 86.5 degrees , whereas a twist angle of around 75 degrees is deduced for DTABN from the extinction coefficient of its lowest-energy absorption band in n-hexane. Because of the electronic decoupling between the amino and benzonitrile groups caused by these large twist angles, the absorption of DTABN and mDTABN is relatively weak below 40000 cm-1, with extinction coefficients around 25 times smaller than those of the planar 4-(dimethylamino)benzonitrile (DMABN). DTABN as well as mDTABN undergo efficient intramolecular charge transfer (ICT) in the singlet excited state, in nonpolar (n-hexane) as well as in polar (acetonitrile) solvents. Their fluorescence spectra consist of an ICT emission band, without evidence for locally excited (LE) fluorescence. The occurrence of efficient ICT with mDTABN is different from the findings with all other N,N-dialkylaminobenzonitriles in the literature, for which ICT only appears with the para-derivative. From solvatochromic measurements, an ICT dipole moment of 17 D is determined for DTABN as well as for mDTABN, similar to that of DMABN. The picosecond fluorescence decays of DTABN (time resolution 3 ps) are effectively single exponential. Their decay time is equal to the ICT lifetime tau'0(ICT), which increases with solvent polarity from 0.86 ns in n-hexane to 3.48 ns in MeCN at 25 degrees C. The femtosecond excited-state absorption (ESA) spectra of DTABN in n-hexane and MeCN at 22 degrees C show a decay of the LE and a corresponding rise of the ICT absorption. The ICT reaction time is 70 fs in n-hexane and 60 fs in MeCN. DTABN and mDTABN may have a strongly twisted ICT state, similar to that of 6-cyanobenzoquinuclidine but different from that of DMABN.  相似文献   

5.
In electron donor/acceptor species such as 4-(dimethylamino)benzonitrile (DMABN), the excitation to the S(2) state is followed by internal conversion to the locally excited (LE) state. Dual fluorescence then becomes possible from both the LE and the twisted intramolecular charge-transfer (TICT) states. A detailed mechanism for the ICT of DMABN and 4-aminobenzonitrile (ABN) is presented in this work. The two emitting S(1) species are adiabatically linked along the amino torsion reaction coordinate. However, the S(2)/S(1) CT-LE radiationless decay occurs via an extended conical intersection "seam" that runs almost parallel to this torsional coordinate. At the lowest energy point on this conical intersection seam, the amino group is untwisted; however, the seam is accessible for a large range of torsional angles. Thus, the S(1) LE-TICT equilibration and dual fluorescence will be controlled by (a) the S(1) torsional reaction path and (b) the position along the amino group twist coordinate where the S(2)/S(1) CT-LE radiationless decay occurs. For DMABN, population of LE and TICT can occur because the two species have similar stabilities. However, in ABN, the equilibrium lies in favor of LE, as a TICT state was found at much higher energy with a low reaction barrier toward LE. This explains why dual fluorescence cannot be observed in ABN. The S(1)-->S(0) deactivation channel accessible from the LE state was also studied.  相似文献   

6.
The photophysics of N-(4-cyanophenyl)carbazole (NP4CN) was investigated by using absorption and fluorescence spectra, picosecond fluorescence decays, and femtosecond transient absorption. In the nonpolar n-hexane as well as in the polar solvent acetonitrile (MeCN), a locally excited (LE) state is detected, as a precursor for the intramolecular charge transfer (ICT) state. A LE → ICT reaction time τ(2) at 22 °C of 0.95 ps in ethyl cyanide (EtCN) and 0.32 ps in MeCN is determined from the decay of the LE excited state absorption (ESA) maximum around 620 nm. In the ESA spectrum of NP4CN in n-hexane at a pump-probe delay time of 100 ps, an important contribution of the LE band remains alongside the ICT band, in contrast to what is observed in EtCN and MeCN. This shows that a LE ? ICT equilibrium is established in this solvent and the ICT reaction time of 0.5 ps is equal to the reciprocal of the sum of the forward and backward ICT rate constants 1/(k(a) + k(d)). In the photostationary S(0) → S(n) absorption spectrum of NP4CN in n-hexane and MeCN, an additional CT absorption band appears, absent in the sum of the spectra of its electron donor (D) and acceptor (A) subgroups carbazole and benzonitrile. This CT band is located at an energy of ~4000 cm(-1) lower than for N-phenylcarbazole (NPC), due to the larger electron affinity of the benzonitrile moiety of NP4CN than the phenyl subunit of NPC. The fluorescence spectrum of NP4CN in n-hexane at 25 °C mainly consists of a structured LE emission, with a small ICT admixture, indicating that a LE → ICT reaction just starts to occur under these conditions. In di-n-pentyl ether (DPeE) and di-n-butyl ether (DBE), a LE emission is found upon cooling at the high-energy edge of the ICT fluorescence band, caused by the onset of dielectric solvent relaxation. This is not the case in more polar solvents, such as diethyl ether (DEE) and MeCN, in which a structureless ICT emission band fully overlaps the strongly quenched LE fluorescence. For the series of D/A molecules NPC, N-(4-fluorophenyl)carbazole (NP4F), N-[4-(trifluoromethyl)phenyl]carbazole (NP4CF), and NP4CN, with increasing electron affinity of their phenyl subgroup, an ICT emission in n-hexane 25 °C only is present for NP4CN, whereas in MeCN an ICT fluorescence is observed with NP4CF and NP4CN. The ICT fluorescence appears when for the energies E(ICT) of the ICT state and E(S(1)) of the lowest excited singlet state the condition E(ICT) ≤ E(S(1)) holds. E(ICT) is calculated from the difference E(D/D(+)) - E(A(-)/A) of the redox potentials of the D and A subgroups of the N-phenylcarbazoles. From solvatochromic measurements with NP4CN an ICT dipole moment μ(e)(ICT) = 19 D is obtained, somewhat larger than the literature values of 10-16 D, because of a different Onsager radius ρ. The carbazole/phenyl twist angle θ = 45° of NP4CN in the S(0) ground state, determined from X-ray crystal analysis, has become smaller for its ICT state, in analogy with similar conclusions for related N-phenylcarbazoles and other D/A molecules in the literature.  相似文献   

7.
6-N,N-Dimethyl-9-methyladenine (DMPURM) and 6-N,N-dimethyladenine (DMPURH) show dual fluorescence from a locally excited (LE) and an intramolecular charge transfer (ICT) state in solvents of different polarity over extended temperature ranges. The fluorescence quantum yields are very small, in particular those of LE. For DMPURM in acetonitrile (MeCN) at 25 °C, for example, Φ'(ICT) = 3.2 × 10(-3) and Φ(LE) = 1.6 × 10(-4). The large value of Φ'(ICT)/Φ(LE) indicates that the forward LE → ICT reaction is much faster than the back reaction. The data obtained for the intersystem crossing yield Φ(ISC) show that internal conversion (IC) is the dominant deactivation channel from LE directly to the ground state S(0). For DMPURM in MeCN with Φ(ISC) = 0.22, Φ(IC) = 1 - Φ(ISC) - Φ'(ICT) - Φ(LE) = 0.78, whereas in cyclohexane an even larger Φ(IC) of 0.97 is found. The dipole moment gradually increases upon excitation, from 2.5 D (S(0)), via 6 D (LE) to 9 D (ICT) for DMPURM and from 2.3 D (S(0)), via 7 D (LE) to 8 D (ICT) for DMPURH. From the temperature dependence of Φ'(ICT)/Φ(LE), a reaction enthalpy -ΔH of 11 kJ/mol is obtained for DMPURM in n-hexane (ε(25) = 1.88), increasing to 17 kJ/mol in the more polar solvent di-n-butyl ether (ε(25) = 3.05). With DMPURM in diethyl ether, an activation energy of 8.3 kJ/mol is determined for the LE → ICT reaction (k(a)). The femtosecond excited state absorption spectra at 22 °C undergo an ultrafast decay: 1.0 ps in CHX and 0.63 ps in MeCN for DMPURM, still shorter (0.46 ps) for DMPURH in MeCN. With DMPURM in n-hexane, the LE fluorescence decay time τ(2) increases upon cooling from 2.6 ps at -45 °C to 6.9 ps at -95 °C. The decay involves ICT and IC as the two main pathways: 1/τ(2) ? k(a) + k(IC). As a model compound (no ICT) is not available, its lifetime τ(0)(LE) ~ 1/k(IC) is not known, which prevents a separate determination of k(a). The excited state reactions of DMPURM and DMPURH are treated with a two-state model: S(0) → LE ? ICT. With 6-N-methyl-9-methyladenine (MPURM) and 9-methyladenine (PURM), the fluorescence quantum yield is very low (<5 × 10(-5)) and dominated by impurities, due to enhanced IC from LE to S(0).  相似文献   

8.
Upon photoexcitation of 4-(dimethylamino)benzonitrile (DMABN) in the polar solvent acetonitrile (MeCN), a methyl group is subtracted from the dimethylamino substituent, producing 4-(methylamino)benzonitrile (MABN). The fluorescence of this photoproduct MABN occurs in the same spectral range as that of the locally excited (LE) state of DMABN. As DMABN undergoes efficient fluorescence quenching in MeCN, leading to a decrease of the LE fluorescence yield by a factor of 290 at 25 degrees C, whereas MABN is not quenched at all, even small amounts of this photoproduct strongly increase the apparent contribution of the LE emission to the total dual fluorescence spectrum of DMABN. As a further consequence of the photoproduct formation, the nanosecond decay time, tau1, in the double-exponential LE fluorescence decay of DMABN in MeCN increases in relative intensity as compared to its picosecond counterpart, tau2, as the fluorescence lifetime of MABN is similar to the tau1 decay time of DMABN. The presence of the photoproduct MABN therefore can lead to a misinterpretation of the kinetic data derived from photostationary and time-resolved fluorescence experiments with DMABN in polar solvents. Photoproducts are also observed with 4-(N-pyrrolidinyl)aminobenzonitrile (P5C) and 4-(N-piperidinyl)aminobenzonitrile (P6C) in MeCN. In the case of P5C, 4-cyano-N-phenylpyrrole (PP4C) is the main product, whereas photolysis of P6C produces 4-aminobenzonitrile (ABN), among other photoproducts. This photodegradation, leading to the appearance of multiexponential decays, likewise has a negative influence on the ICT and LE fluorescence spectra and fluorescence decays of P6C and P5C, again impairing the validity of the kinetic analysis of these data. The isosbestic (absorption) and isoemission (fluorescence) points encountered in the spectra of DMABN and P6C during photoirradiation indicate that at least one photoproduct is formed.  相似文献   

9.
The time-dependent density functional theory (TDDFT) method was carried out to investigate the hydrogen-bonded intramolecular charge-transfer (ICT) excited state of 4-dimethylaminobenzonitrile (DMABN) in methanol (MeOH) solvent. We demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O formed between DMABN and MeOH can induce the C[triple bond]N stretching mode shift to the blue in both the ground state and the twisted intramolecular charge-transfer (TICT) state of DMABN. Therefore, the two components at 2091 and 2109 cm(-1) observed in the time-resolved infrared (TRIR) absorption spectra of DMABN in MeOH solvent were reassigned in this work. The hydrogen-bonded TICT state should correspond to the blue-side component at 2109 cm(-1), whereas not the red-side component at 2091 cm(-1) designated in the previous study. It was also demonstrated that the intermolecular hydrogen bond C[triple bond]N...H-O is significantly strengthened in the TICT state. The intermolecular hydrogen bond strengthening in the TICT state can facilitate the deactivation of the excited state via internal conversion (IC), and thus account for the fluorescence quenching of DMABN in protic solvents. Furthermore, the dynamic equilibrium of these electronically excited states is explained by the hydrogen bond strengthening in the TICT state.  相似文献   

10.
The solvent-polarity dependence and temporal characteristics of the transient absorption of 4-(dimethylamino)benzonitrile, DMABN, and 4-(dimethylamino)benzethyne, DMABE, demonstrate the presence of the πσ*-state absorption at about 700 nm and the ππ* (LE)-state absorption at about 520 nm and 450 nm. The rise and decay times of the πσ*-state transient differ from those of the ππ*-state transients in both compounds. Moreover, the peak position of the πσ*-state absorption is blue-shifted and more intense in acetonitrile as compared to n-hexane, whereas the band positions of the ππ*-state absorptions are essentially the same in the two solvents. For DMABN in acetonitrile, the rise time (~4.3 ps) of the twisted intramolecular charge transfer (TICT)-state transient at 330 nm is identical to the decay time of the πσ*-state transient. The 4.8 ns decay time of the TICT-state absorption of DMABN is longer than the 2.9 ns decay time of the intramolecular charge-transfer (ICT) fluorescence, indicating that the fluorescent ICT state differs from the TICT state observed in transient absorption. These results are consistent with the presence of a low-lying πσ* state in DMABN (and DMABE), and the role the πσ* state plays in the formation of the TICT state of DMABN.  相似文献   

11.
Ultrafast relaxation dynamics of the excited singlet (S(1)) state of Michler's ketone (MK) has been investigated in different kinds of solvents using a time-resolved absorption spectroscopic technique with 120 fs time resolution. This technique reveals that conversion of the locally excited (LE) state to the twisted intramolecular charge transfer (TICT) state because of twisting of the N,N-dimethylanilino groups with respect to the central carbonyl group is the major relaxation process responsible for the multi-exponential and probe-wavelength-dependent transient absorption dynamics of the S1 state of MK, but solvation dynamics does not have a significant role in this process. Theoretical optimization of the ground-state geometry of MK shows that the dimethylanilino groups attached to the central carbonyl group are at a dihedral angle of about 51 degrees with respect to each other because of steric interaction between the phenyl rings. Following photoexcitation of MK to its S1 state, two kinds of twisting motions have been resolved. Immediately after photoexcitation, an ultrafast "anti-twisting" motion of the dimethylanilino groups brings back the pretwisted molecule to a near-planar geometry with high mesomeric interaction and intramolecular charge transfer (ICT) character. This motion is observed in all kinds of solvents. Additionally, in solvents of large polarity, the dimethylamino groups undergo further twisting to about 90 degrees with respect to the phenyl ring, to which it is attached, leading to the conversion of the ICT state to the TICT state. Similar characteristics of the absorption spectra of the TICT state and the anion radical of MK establish the nearly pure electron transfer (ET) character of the TICT state. In aprotic solvents, because of the steep slope of the potential energy surface near the Franck-Condon (FC) or LE state region, the LE state is nearly nonemissive at room temperature and fluorescence emission is observed from only the ICT and TICT states. Alternatively, in protic solvents, because of an intermolecular hydrogen-bonding interaction between MK and the solvent, the LE region is more flat and stimulated emission from this state is also observed. However, a stronger hydrogen-bonding interaction between the TICT state and the solvent as well as the closeness between the two potential energy surfaces due to the TICT and the ground states cause the nonradiative coupling between these states to be very effective and, hence, cause the TICT state to be weakly emissive. The multi-exponentiality and strong wavelength-dependence of the kinetics of the relaxation process taking place in the S1 state of MK have arisen for several reasons, such as strong overlapping of transient absorption and stimulated emission spectra of the LE, ICT, and TICT states, which are formed consecutively following photoexcitation of the molecule, as well as the fact that different probe wavelengths monitor different regions of the potential energy surface representing the twisting motion of the excited molecule.  相似文献   

12.
Fast and efficient intramolecular charge transfer (ICT) and dual fluorescence is observed with the planarized aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in a series of solvents from n-hexane to acetonitrile and methanol. Such a reaction does not take place for the related molecules with 1-isopropyl (NIC6) and 1-methyl (NMC6) groups, nor with the 1-alkyl-5-cyanoindolines with methyl (NMC5), isopropyl (NIC5), or tert-butyl (NTC5) substituents. For these molecules, a single fluorescence band from a locally excited (LE) state is found. The charge transfer reaction of NTC6 is favored by its relatively small energy gap DeltaE(S(1),S(2)), in accordance with the PICT model for ICT in aminobenzonitriles. For the ICT state of NTC6, a dipole moment of around 19 D is obtained from solvatochromic measurements, similar to micro(e)(ICT) = 17 D of 4-(dimethylamino)benzonitrile (DMABN). For NMC5, NIC5, NTC5, NMC6, and NIC6, a dipole moment of around 10 D is determined by solvatochromic analysis, the same as that of the LE state of DMABN. For NTC6 in diethyl ether at -70 degrees C, the forward ICT rate constant (1.3 x 10(11) s(-1)) is much smaller than that of the back reaction (5.9 x 10(9) s(-1)), showing that the equilibrium is on the ICT side. The results presented here make clear that ICT can very well take place with a planarized molecule such as NTC6, when DeltaE(S(1),S(2)) is sufficiently small, indicating that a perpendicular twist of the amino group relative to the rest of the molecule is not necessary for reaching an ICT state with a large dipole moment. The six-membered alicyclic ring in NMC6, for example, prevents ICT by increasing DeltaE(S(1),S(2)) relative to that of DMABN.  相似文献   

13.
Santhosh K  Samanta A 《Chemphyschem》2012,13(7):1956-1961
The kinetics of excited-state intramolecular electron-transfer reaction and dynamics of solvation of the intramolecular charge transfer (ICT) state of 4-(N,N'-dimethylamino)benzonitrile (DMABN) was studied in 1-butyl-3-methylimidazloium hexafluorophosphate, [bmim][PF(6)], by monitoring the dual fluorescence of the system. The picosecond time-resolved emission spectra (TRES) of DMABN exhibit decay of the locally excited (LE) emission intensity and shift of the ICT emission peak position with time, thus capturing the kinetics of evolution of the ICT state from the LE state and solvent relaxation of the ICT state. These results show that the LE→ICT transformation rate is determined not by the slow dynamics of solvation in ionic liquid, but is controlled mainly by the rate of structural reorganization of the molecule, which accompanies the electron-transfer process in this polar viscous medium. Even though both solvent reorganization around photo-excited DMABN and structural rearrangement of the molecule are dependent on the viscosity of the medium, it is the latter process that contributes to the viscosity dependence of the LE→ICT transformation.  相似文献   

14.
The fluorescence spectrum of crystals grown from newly synthesized 4-(dimethylamino)benzonitrile (DMABN), measured from 25 down to −112 °C, consists of a single emission band originating from a locally excited (LE) state. The fluorescence decay of the DMABN crystals is single exponential at all temperatures investigated. These results show that intramolecular charge transfer (ICT) does not occur in crystalline DMABN. The additional red-shifted emission bands and multiexponential fluorescence decays previously reported for DMABN crystals are attributed to a minor amount of the impurity 4-(dimethylamino)benzaldehyde, the synthetic precursor of commercial DMABN.  相似文献   

15.
Quantum-chemical calculations of the Thioflavin T (ThT) molecule in the ground S0 and first excited singlet S1 states were carried out. It has been established that ThT in the ground state has a noticeable nonplanar conformation: the torsion angle phi between the benzthiazole and the dimethylaminobenzene rings has been found to be approximately 37 degrees. The energy barriers of the intramolecular rotation appearing at phi = 0 and 90 degrees are quite low: semiempirical AM1 and PM3 methods predict values approximately 700 cm-1 and ab initio methods approximately 1000-2000 cm(-1). The INDO/S calculations of vertical transitions to the S1(abs) excited state have revealed that energy ES1(abs) is minimal for the twisted conformation with phi = 90 degrees and that the intramolecular charge-transfer takes place upon the ThT fragments' rotation from phi = 0 to 90 degrees. Ab initio CIS/RHF calculations were performed to find optimal geometries in the excited S1 state for a series of conformers having fixed phi values. The CIS calculations have predicted a minimum of the S1 state energy at phi approximately 21 degrees; however, the energy values are 1.5 times overestimated in comparison to experimental data. Excited state energy dependence on the torsion angle phi, obtained by the INDO/S method, reveals that ES1(fluor) is minimal at phi = approximately 80-100 degrees, and a plateau is clearly observed for torsion angles ranging from 20 to 50 degrees. On the basis of the calculation results, the following scheme of photophysical processes in the excited S1 state of the ThT is suggested. According to the model, a twisted internal charge-transfer (TICT) process takes place for the ThT molecule in the excited singlet state, resulting in a transition from the fluorescent locally excited (LE) state to the nonfluorescent TICT state, accompanied by torsion angle phi growth from 37 to 90 degrees. The TICT process effectively competes with radiative transition from the LE state and is responsible for significant quenching of the ThT fluorescence in low-viscosity solvents. For viscous solvents or when the ThT molecule is located in a rather rigid microenvironment, for example, when it is bound to amyloid fibrils, internal rotation in the dye molecule is blocked due to steric hindrance, which results in suppression of the LE --> TICT quenching process and in a high quantum yield of fluorescence.  相似文献   

16.
The triplet state dipole moments mu(T) of a series of 4-amino- and 3-aminobenzonitriles in cyclohexane, benzene, and 1,4-dioxane are recalculated from previously published [J. Phys. Chem. 1992, 96, 10809] time-resolved microwave conductivity data, on the basis of newly measured intersystem crossing yields. For 4-(dimethylamino)benzonitrile (DMABN), the following values are now determined for mu(T): 8.3 D (cyclohexane), 8.9 D (benzene), and 9.7 D (1,4-dioxane), as compared with the previously reported dipole moment of 12 D for the first and the last solvent. With the other aminobenzonitriles, similar mu(T) data are obtained, between 6.9 D for 4-aminobenzonitrile (ABN) in n-hexane and 10.0 D for 4-(di-n-decylamino)benzonitrile (DDABN) in 1,4-dioxane. The increase of mu(T) observed for all aminobenzonitriles when going from cyclohexane via benzene to 1,4-dioxane may indicate that their triplet dipole moments become larger with increasing solvent polarity. The present mu(T) of DMABN, between 8.3 and 9.7 D, although larger than the ground state dipole moment mu(0) of 6.6 D, is somewhat smaller than that of the locally excited (LE) state (9.9 D) but considerably smaller than the dipole moment of the intramolecular charge transfer (ICT) state (17 D). By comparing these mu(X) data with the frequency (CN) of the cyano vibration in each state, it appears that at least for DMABN in the triplet state (CN) is not a reliable indication of the extent of charge transfer as compared with the other states S0, LE, and ICT.  相似文献   

17.
Intramolecular charge-transfer (ICT) state formation of 4-(N,N-dimethylamino)benzonitrile in acetonitrile solution is studied by the reference interaction site model self-consistent field (RISM-SCF) method. Geometry optimizations are performed for each electronic state in solution with the complete-active-space SCF wave functions. Dynamic electron correlation effects are taken into account by using the multiconfigurational quasidegenerate perturbation theory. Two-dimensional free energy surfaces are constructed as the function of the twisting and wagging angles of the dimethylamino group for the ground and locally excited (LE) states. The calculated absorption and fluorescence energies are in good agreement with experiments. The validity of the twisted ICT (TICT) model is confirmed in explaining the dual fluorescence, and the possibility of the planar ICT model is ruled out. To examine the mechanism of the TICT state formation, a "crossing" seam between the LE and charge-transfer (CT) state surfaces is determined. The inversion of two electronic states occurs at a relatively small twisting angle. The effect of solvent reorganization is also examined. It is concluded that the intramolecular twisting coordinate is more important than the solvent fluctuation for the TICT state formation, because the energy difference between the two states is minimally dependent on the solvent configuration.  相似文献   

18.
The photochemical behavior of a series of trans-3-(N-arylamino)stilbenes (m1, aryl = 4-substituted phenyl with a substituent of cyano (CN), hydrogen (H), methyl (Me), or methoxy (OM)) in both nonpolar and polar solvents is reported and compared to that of the corresponding para isomers (p1CN, p1H, p1Me, and p1OM). The distinct propensity of torsional motion toward a low-lying twisted intramolecular charge-transfer (TICT) state from the planar ICT (PICT) precursor between the meta and para isomers of 1CN and 1Me reveals the intriguing meta conjugation effect and the importance of the reaction kinetics. Whereas the poor charge-redistribution (delocalization) ability through the meta-phenylene bridge accounts for the unfavorable TICT-forming process for m1CN, it is such a property that slows down the decay processes of fluorescence and photoisomerization for m1Me, facilitating the competition of the single-bond torsional reaction. In contrast, the quinoidal character for p1Me in the PICT state kinetically favors both fluorescence and photoisomerization but disfavors the single-bond torsion. The resulting concept of thermodynamically allowed but kinetically inhibited TICT formation could also apply to understanding the other D-A systems, including trans-4-cyano-4'-(N,N-dimethylamino)stilbene (DCS) and 3-(N,N-dimethylamino)benzonitrile (3DMABN).  相似文献   

19.
Ab initio calculations have been performed to examine the photochemical behavior of 4-(dimethylamino)benzenzonitrile (DMABN). The conical intersection between S2 and S1 (S2/S1-CIX), where the internal conversion takes place after the main transition of S0-S2 at the equilibrium geometry in S0, is characterized by a dimethylamino-twisted quinoid structure where aromaticity of the benzene ring is lost. The optimized geometry of the charge transfer (CT) state in S1 has a feature similar to that of S2/S1-CIX but is not energetically stabilized so much. Consequently, electronically excited DMABN with CT character relaxes into the most stable locally excited (LE) state in S1 through a recrossing at S2/S1-CIX in gas phase or nonpolar solvent. In polar solvent, in contrast, the equilibration between LE and CT takes place in S1 so that the CT state is more stable because of electrostatic interaction. The excited states of DMABN derivatives have been also examined. On the basis of the present computational results, a new and simple guiding principle of the emission properties is proposed, where conventional twisted intramolecular CT (TICT) and planar intramolecular CT (PICT) models are properly incorporated.  相似文献   

20.
Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号