首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Photochemical reactions of molecules in solid orthodeuterium (o-D2) have been studied by high-resolution infrared spectroscopy and compared with previous results obtained in solid parahydrogen (p-H2). Ultraviolet photolysis of CD3I molecules in solid o-D2 yielded CD3 radicals and iodine atoms efficiently, which indicates a small cage effect in solid o-D2, as in the case of solid p-H2. The Fourier transform infrared spectrum of the nu3 vibrational band of CD3 showed a rotational structure with additional splitting due to crystal field interactions. The magnetic dipole transition (2P1/2<--2P3/2) of the I atom isolated in solid o-D2 was observed together with a strong rotational satellite of deuterium molecules through the electron-roton coupling in solid hydrogen. The tunneling reaction between CD3 and D2 was not observed in a time scale of a few days, which gives the upper limit of the tunneling reaction rate of 10(-8) s(-1) at 4.2 K.  相似文献   

2.
The 355 nm photodissociation of Cl(2) trapped in a solid parahydrogen matrix at 2 K leads to the formation of isolated Cl photofragments. At these low temperatures (k(B)T approximately 1.4 cm(-1)), the Cl atoms can not react with the parahydrogen matrix since the reaction Cl + H(2)(v = 0, j = 0) --> HCl(v = 0, j = 0) + H is endothermic by 360 cm(-1). Irradiation of the Cl atom doped parahydrogen solid with broadband infrared radiation from 4000 cm(-1) to 5000 cm(-1) induces reaction of atomic Cl with the parahydrogen matrix to form HCl. The infrared-induced chemistry is attributed to solid parahydrogen absorptions that lead to the creation of vibrationally excited H(2)(v = 1), which supply the necessary energy to induce reaction. The kinetics of this low temperature infrared-induced reaction is studied using Fourier Transform infrared spectroscopy of the HCl reaction product. The HCl formation kinetics is first-order and the magnitude of the effective rate constant for the infrared-induced reaction depends on the properties of the near infrared radiation.  相似文献   

3.
Solid parahydrogen provides a novel matrix for isolation spectroscopy of atoms and molecules. Ro-vibrational motion of molecules embedded in solid parahydrogen is well quantized on account of the weak interactions in the crystal and of the softness of the crystal being characteristic of quantum crystals. Most of the observed spectral linewidths are one or two orders of magnitude sharper than those observed in conventional rare gas matrices. The sharp linewidths make the parahydrogen crystal an excellent matrix for the study of ro-vibrational states and dynamics of dopant molecules in the condensed phase by high-resolution spectroscopy. In this article, we have summarized the most fundamental part of our study, that is, the theory of ro-vibrational states of dopant molecules in the crystal, which is necessary for the quantitative analysis of high-resolution infrared spectra. We also discuss what we have learned from the analysis of high-resolution infrared spectra in solid parahydrogen. These include perturbations to rotational motion of dopant molecules, reduction of rotational constants, vibrational dephasing and relaxation. Outstanding questions to be solved are also discussed herein.  相似文献   

4.
We report 355 nm photodissociation studies of molecular bromine (Br2) trapped in solid parahydrogen (pH2) and orthodeuterium (oD2). The product Br atoms are observed via the spin-orbit transition ((2)P(1/2)<-- (2)P(3/2)) of atomic bromine. The quantum yield (Phi) for Br atom photoproduction is measured to be 0.29(3) in pH2 and 0.24(2) in oD2, demonstrating that both quantum solids have minimal cage effects for Br2 photodissociation. The effective Br spin-orbit splitting increases when the Br atom is solvated in solid pH2 (+1.1%) and oD2 (+1.5%); these increases are interpreted as evidence that the solvation energy of the Br ground fine structure state ((2)P(3/2)) is significantly greater than the excited state ((2)P(1/2)). Molecular bromine induced H2 infrared absorptions are detected in the Q1(0) and S1(0) regions near 4150 and 4486 cm(-1), respectively, which allow the relative Br2 concentration to be monitored as a function of 355 nm photolysis.  相似文献   

5.
High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.  相似文献   

6.
We report measurements of FT-IR absorption spectroscopy of HF, DF, and their clusters in solid parahydrogen (pH(2)). The observed spectra contain many absorption lines which were assigned to HF monomers, HF polymers, and clusters with other species, such as N(2), O(2), orthohydrogen (oH(2)), etc. The rotational constants of HF and DF monomers were determined from the cooperative transitions of the vibration of solid pH(2) and the rotation of HF and DF. Small reduction of the rotational constants indicates that HF and DF are nearly free rotors in solid pH(2). Time dependence of the spectra suggests that HF and DF monomers migrate in solid pH(2) and form larger polymers, probably via tunneling reactions through high energy barriers on inserting another monomer to the polymers. The line width of HF monomers in solid pH(2) was found to be 4 cm(-1), which is larger than that of other hydrogen halides in solid pH(2). This broad line width is explained by rapid rotational relaxation due to the accidental coincidence between the rotational energy of HF and the phonon energy with maximum density of states of solid pH(2) and the rotational-translational coupling in a trapping site.  相似文献   

7.
We report polarized infrared absorption spectra of water isotopologues isolated in solid parahydrogen (pH2) which reveal the crystal field induced splittings of the 1 01<--0 00 R(0) lines in the nu1 HDO, nu3 D2O, nu3 HDO, and nu3 H2O fundamental bands. For annealed pH2 solids, these spectra also reveal a strong alignment of the hexagonal-close-packed crystallites' c axes with the deposition substrate surface normal. This alignment effect explains our failure to detect the parallel-polarized components of these R(0) lines in spectra of pH2 solids produced on a transparent deposition substrate [M. E. Fajardo et al., J. Mol. Struct. 695, 111 (2004)]. This lesson applies more generally to comparison of solid pH2 spectra obtained in different laboratories. The spectra are consistent with water monomers existing in solid pH2 as very slightly hindered rotors. The individual components of the R(0) absorption lines show a Lorentzian lineshape, with vibrational depopulation the most important source of line broadening.  相似文献   

8.
Hydrogen is flowed through a mild tesla-coil discharge and trapped at 3.8 K: New infrared absorptions of H2 are induced by interaction with trapped H atoms and H- anions. High purity parahydrogen and orthodeuterium samples are 1%-9% reconverted depending on the discharge pressure and recombination of atoms. Annealing the solid samples to 7 K reveals growth in p-H2 induced by o-H2, which shows that H atom recombination produces thermal nuclear spin populations. Similar results are found in discharge experiments with HD and on annealing solid HD. The observed increase in induced HD absorption by J = 1, H2 and D2 molecules formed on recombination gives approximately 1% for the H[D] atom concentration in our solid HD samples.  相似文献   

9.
The infrared spectra (3500-50 cm(-1)) of the gas and solid and the Raman spectra (3500-50 cm(-1)) of the liquid and solid have been recorded for 1-fluoro-2-butyne, CH3-C-triple bond-C-CH2F. Equilibrium geometries and energies have been determined by ab initio and hybrid DFT methods using a number of basis sets. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on vibrational-rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of Coriolis sub-band structure in two of the degenerate methyl vibrations. The results are compared to the corresponding quantities for some similar molecules.  相似文献   

10.
The rotationally resolved electronic spectra of the electronic origin of the 7-azaindole-(H(2)O)(1) and of the 7-azaindole-(H(2)O)(2) clusters have been measured in a molecular beam. From the rotational constants the structures in the S(0) and S(1) electronic states were determined as cyclic with the pyrrolo NH and the pyridino N atoms being bridged by one and two water molecules, respectively. Excited state lifetimes of about 10 ns for both clusters have been found. In the spectrum of the 7-azaindole-(H(2)O)(2) cluster a splitting of the rovibronic band is observed, which can be traced back to a large amplitude motion, involving the out-of-plane hydrogen atoms of the water chain. Both the changes of the rotational constants upon electronic excitation and the orientation of the transition dipole point to a solvent induced state reversal between the L(a) and the L(b) states upon microsolvation.  相似文献   

11.
Rotationally resolved fluorescence excitation spectra of the S(1)<--S(0) origin band of 7-azaindole [1H-pyrrolo(2,3-b)pyridine] and its argon atom van der Waals complex have been recorded and assigned. The derived rotational constants give information about the geometries of the two molecules in both electronic states. The equilibrium position of the argon atom in the azaindole complex is considerably different from its position in the corresponding indole complex. Furthermore, the argon atom moves when the UV photon is absorbed. There are significant differences in the intermolecular potential energy surfaces in the two electronic states. A large, vibration-state-dependent rotation of the S(1)<--S(0) electronic transition moment vector of 7-azaindole relative to that of indole suggests that these differences have their origin in S(1)/S(2) electronic state mixing in the isolated molecule, a mixing that is enhanced by nitrogen substitution in the six-membered ring.  相似文献   

12.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

13.
Sub-Doppler high-resolution excitation spectra and the Zeeman effects of the 6(0)(1), 1(0)(1)6(0)(1), and 1(0)(2)6(0)(1) bands of the S1(1)B2u<--S(0)(1)A1g transition of benzene were measured by crossing laser beam perpendicular to a collimated molecular beam. 1593 rotational lines of the 1(0) (1)6(0) (1) band and 928 lines of the 1(0)(2)6(0)(1) band were assigned, and the molecular constants of the excited states were determined. Energy shifts were observed for the S1(1)B2u(v1=1,v6=1,J,Kl=-11) levels, and those were identified as originating from a perpendicular Coriolis interaction. Many energy shifts were observed for the S1(1)B2u(v1=2,v6=1,J,Kl) levels. The Zeeman splitting of a given J level was observed to increase with K and reach the maximum at K=J, which demonstrates that the magnetic moment lies perpendicular to the molecular plane. The Zeeman splittings of the K=J levels were observed to increase linearly with J. From the analysis, the magnetic moment is shown to be originating mostly from mixing of the S1(1)B2u and S2(1)B1u states by the J-L coupling (electronic Coriolis interaction). The number of perturbations was observed to increase as the excess energy increases, and all the perturbing levels were found to be a singlet state from the Zeeman spectra.  相似文献   

14.
Most fundamentals modes of the water dimer have been experimentally determined, and the frequencies have been measured in either neon or parahydrogen matrices. The band strengths of all intramolecular and most intermolecular fundamentals of the water dimer have been measured. The results are further corroborated by comparison with the corresponding data for the fully deuterated water dimer. DFT calculations of the mode frequencies and band strength are in qualitative agreement with the experimental observations.  相似文献   

15.
Absorption spectra from 4000 to 1200 cm?1 of amorphous solid water and polycrystalline ice Ic have been measured between 10 K and 140 K. Warm up and recooling of an H2O sample prepared at 10 K gives rise to both irreversible and reversible changes in the peak frequency, band width, and peak height as well as the integrated intensity of the OH stretching band. These spectral effects are related to structural differences. The structure of amorphous solid water also depends on deposition conditions. The optical constants of amorphous so water are determined at 10 K and 80 K from a Kramers-Kronig analysis of the transmission spectra taking into account reflection and interference losses. The astrophysical implication of the temperature dependence of peak frequency and band width of the 3250 cm?1 band in amorphous solid water is discussed briefly.  相似文献   

16.
The properties of the microheterogeneous systems formed by mixtures of cetyltrimethylammonium bromide (CTAB) and an alternating copolymer of maleic acid and styrene, MAS, and their anionic monoesters, MAS-n with n=2, 4, 6, 8, were investigated. The fluorescence of pyrene was used to sense the polarity of the polymer/CTAB aggregates. Measurements of the ratio III/I in pyrene fluorescence spectra indicate that the polymer/CTAB aggregates are more hydrophobic than normal micelles. A series of p-alkyl substituted phenols were employed to probe the solubilization ability of these aggregates. The distribution constant K(S) of phenol, p-methylphenol, p-ethylphenol, and p-propylphenol between water and MAS-n/CTAB aggregates and the corresponding free energy of transfer Deltamicro(0)(t) have been determined using the pseudo-phase model. The results show that the distribution is mainly determined by the phenol structure, and a linear free energy relationship has been found between Deltamicro(0)(t) and the structure of phenols. On the other hand, an increase in the number of methylene groups in the side alkyl chain has no effect on Deltamicro(0)(t). The results are discussed and compared with those obtained for ionic micelles.  相似文献   

17.
Electronic relaxation pathways in photoexcited nucleobases have received much theoretical and experimental attention due to their underlying importance to the UV photostability of these biomolecules. Multiple mechanisms with different energetic onsets have been proposed by ab initio calculations yet the majority of experiments to date have only probed the photophysics at a few selected excitation energies. We present femtosecond time-resolved photoelectron spectra (TRPES) of the DNA base adenine in a molecular beam at multiple excitation energies between 4.7-6.2 eV. The two-dimensional TRPES data is fit globally to extract lifetimes and decay associated spectra for unambiguous identification of states participating in the relaxation. Furthermore, the corresponding amplitude ratios are indicative of the relative importance of competing pathways. We adopt the following mechanism for the electronic relaxation of isolated adenine; initially the S(2)(ππ*) state is populated by all excitation wavelengths and decays quickly within 100 fs. For excitation energies below ~5.2 eV, the S(2)(ππ*)→S(1)(nπ*)→S(0) pathway dominates the deactivation process. The S(1)(nπ*)→S(0) lifetime (1032-700 fs) displays a trend toward shorter time constants with increasing excitation energy. On the basis of relative amplitude ratios, an additional relaxation channel is identified at excitation energies above 5.2 eV.  相似文献   

18.
The infrared absorption spectra of the water molecules and small water clusters, (H(2)O)(n) with n = 2-6, trapped in solid argon, krypton, and xenon matrices have been investigated. The infrared bands of the water clusters with n = 5 and 6 in krypton and n = 3, 4, 5, and 6 in xenon matrices have been identified for the first time in the bonded OH stretching region. The frequency shifts in the bonded OH stretching band of the water dimer and trimer in xenon matrices show fairly large deviations to the red from the empirical correlation between the matrix shifts and the square root of the critical temperatures of the matrix material. The observed anomalous shifts suggest that the water dimer and trimer in solid xenon are trapped in multiple sites, and that the structures of the preferential trapping sites are different from those in argon and krypton matrices.  相似文献   

19.
Noble-gas hydride molecules with the general formula HNgY (Ng denotes noble-gas atom and Y denotes electronegative fragment) are usually prepared in solid noble gases. In many cases, the matrix-isolated HNgY molecules show a characteristic structure of the H-Ng stretching absorption: A close doublet as the main spectral feature and a weaker satellite at higher energy. This characteristic band structure is studied here for matrix-isolated HXeBr and HKrCl molecules. Based on the experimental and theoretical results, we suggest a model explaining the common features of the band structure of the HNgY molecules in noble-gas matrices. In this model, the main doublet bands are attributed to matrix sites where the splitting is caused by specific interactions of the embedded molecule with noble-gas matrix atoms in certain local morphology. The weaker blueshifted band is probably a fingerprint of hindered rotation (libration) of the embedded molecule in the lattice. This librational band has a mirror counterpart at lower energies appearing at higher matrix temperatures. Our present ab initio calculations for the one-to-one Xe...HXeBr complexes and the simulation of hindered rotation in a matrix support this image.  相似文献   

20.
The photochemistry of the chelated enol form of acetylacetone (AcAc) was investigated by UV excitation of the S(2) state at 266 nm in parahydrogen matrices, complemented by experiments in neon and normal hydrogen matrices. Infrared (IR) spectroscopy, combined with theoretical calculations, was used to identify the photoproducts. Isomerization towards various non-chelated forms (no intramolecular H-bond) of AcAc is the dominant channel whereas fragmentation is very minor. The isomerization kinetics is monitored by IR spectroscopy. Among the seven non-chelated conformers of AcAc, only three are formed in parahydrogen matrices, whereas four are observed in normal hydrogen matrices. This difference suggests that an active tunnelling process between conformers occurs in parahydrogen but is quenched in normal hydrogen where guest-host interactions are stronger. Fragmentation and isomerization of excited AcAc are discussed in the light of these new data. The role of the intermediate triplet state in the S(2)→ S(0) relaxation is confirmed, as the importance of phonons in the condensed phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号