共查询到20条相似文献,搜索用时 31 毫秒
1.
Additive manufacturing is gaining a remarkable importance in manufacturing industries because of the ability to build parts with complex and intricate shapes. The most widely used material in additive manufacturing is the polymer. In this paper, circular textures have been 3D printed on the surface of Polylactic Acid (PLA) polymer using fused deposition modelling technique. Experiments were performed under dry and lubricated conditions by varying the texture size. The results were obtained for high and low speeds with varying loads of 10, 20, 30, 40 and 50 N. It was observed that coefficient of friction was minimum for texture T2 at both high and low speeds under dry sliding conditions. This is due to the less real area of contact than texture T1 and more effective formation of transfer film in case of texture T3. The entrapment of wear debris is more effective which helps in the formation of transfer layer that acts as solid lubricant. Under lubricated conditions, it was observed that for low speed, texture T3 has least coefficient of friction while at high speed texture T1 resulted in the minimum coefficient of friction. This is mainly due to the more retention of lubricating oil for texture T3 at low speed in comparison to the high speed. Surface analysis carried out for all the textures under dry sliding conditions revealed that the wear is mainly to adhesive and abrasive action. 相似文献
2.
Fatemeh Hedayati Nasrin Moshiri‐Gomchi Mahmood Assaran‐Ghomi Sara Sabahi Naeimeh Bahri‐Laleh Shahram Mehdipour‐Ataei Javad Mokhtari‐Aliabad Seyed Amin Mirmohammadi 《先进技术聚合物》2020,31(3):566-573
In order to lower brittleness of biobased polylactic acid (PLA), its blending with polycarbonate and nanosilica is aimed. In this line, to increase compatibility of the ingredients, dicumyl peroxide (DCP) and Cobalt (II) acetylacetonate (Co) were used as grafting and transesterification catalysts, respectively. The X‐ray diffraction (XRD) spectra demonstrated high compatibility of the ingredients by broadening of the PLA characteristic peaks and, also, good dispersion of nanosilica particles, especially in PLA/PC/Silica/Co sample. The EDX maps confirmed good nanosilica dispersion, too. The silica nanoparticle size was ranged from 20 to 100 nm in transmission electron microscopy (TEM) pictures. All nanocomposites showed improved thermal stability in thermogravimetric analysis (TGA). Differential scanning calorimetry (DSC) results demonstrated lower Tg, Tm, and crystallinity values for the fabricated nanocomposites. Notably, the dynamic mechanical thermal analysis (DMTA) curves confirmed the Tg, Tm, and Tcc trend obtained in DSC; moreover, much higher surface under tan δ peak for PLA/PC/Silica/Co sample was obtained, which implies its higher toughness. The precise tensile study of the samples confirmed significantly higher elongation at break of the nanocomposites, more considerably in PLA/PC/Silica/Co sample, with nearly negligible defect on tensile strength and modulus. In a concise, the obtained results confirmed the higher efficiency of Co catalyst, which leads to the sample with improved characteristics compared with DCP. 相似文献
3.
Effect of wood flour as nucleating agent on the isothermal crystallization of poly(lactic acid) 下载免费PDF全文
The effect of wood flour (WF) as an efficient nucleating agent on the isothermal melt crystallization and isothermal cold crystallization behavior of poly(lactic acid) (PLA) was investigated by differential scanning calorimeter and polarized optical microscopy. It was found that the incorporation of 4 wt% WF promoted the crystallization of PLA about 4.2%. Polarized optical microscopy results showed the Maltese cross of the samples. The presence of the 4 wt% WF may increase the nucleation density, leading to the increase of the spherulites; however, the size of the spherulites decreased, and the structure became incomplete. The Avrami model was applied to analyze the isothermal crystallization kinetics. It is concluded that the addition of WF modified the crystallization process of PLA (the value of Avrami exponent changed). Various parameters, such as the crystallization half time and crystallization rate constant, reflect that 4 wt% WF significantly improves the crystallization process. The observations in this article indicate that WF is an efficient nucleating agent of PLA. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
4.
3D printed honeycomb structures constituted by neat polylactic acid (PLA) and conductive PLA (PLAc) with different cell sizes and thicknesses were manufactured through 3D printing technology based on material extrusion (MEX). These structures were arranged into bi-layer honeycomb structures (BHS) for evaluation of the microwave absorbing properties at the X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz) frequency ranges. The effects of cell size, sample thickness, layer thickness ratio and the nature of the top layer on the electromagnetic attenuation performance of BHS samples were investigated in terms of reflection loss (RL). The components geometric characteristics and the arrangement of the layers exerted great influence on the RL values and effective absorption bandwidth (EAB). Overall the bilayer structures with 5 mm total thickness presented the best EM response in terms of EAB and minimum RL, where the component with the larger cell size (7.7 mm), PLAc (1 mm) as the top layer and PLA (4 mm) as the bottom layer exhibited the best results with RL values of −41 dB and EAB of 9.5 GHz. The BHS system with 7.7 mm cell size was more efficient in Ku band frequency range, whereas that with 3.5 mm cell size gave better response in the X-band frequency range. Therefore, RL values and EAB can be adjustable by modifying the building strategy of the printed parts, such as thickness of the sample, cell size and thickness distribution of the conductive and non-conductive layers. The findings in this work show the importance of the building strategy to fabricate components with controllable BHS and improved properties for microwave absorption application. 相似文献
5.
Additive manufacturing offers a useful and accessible tool for prototyping and manufacturing small volume functional parts. Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are amongst the most commonly used materials. Characterising 3D printed PLA and TPU is potentially important for both designing and finite element modelling of functional parts. This work explores the mechanical properties of additively manufactured PLA/TPU specimens with consideration to design parameters including size, and infill percentage. PLA/TPU specimens are 3D-printed in selected ISO standard geometries with 20%, 60%, 100% infill percentage. Tensile and compression test results suggest that traditional ISO testing standards might be insufficient in characterising 3D printed materials for finite element modelling or application purposes. Infill percentage in combination to design size, may significantly affect the mechanical performance of 3D printed parts. Dimensional variation may cause inhomogeneity in mechanical properties between large and small cross section areas of the same part. The effect was reduced in small cross section parts where reducing the nominal infill had less effect on the resulting specimens. The results suggest that for 3D printed functional parts with significant dimensional differences between sections, the material properties are not necessarily homogeneous. This consideration may be significant for designers using 3D printing for applications, which include mechanical loading. 相似文献
6.
In order to develop a new kind of filament material for the fused deposition modeling (FDM) 3D printing, the residue of Astragalus (ROA), one of the most important Chinese herbal medicines, and polylactic acid were chosen as the raw materials to FDM 3D print biomass composite specimens, the effects of the printing parameters on the properties of the specimens were investigated. The results indicated that the mechanical properties and thermal stability of the printed specimen were affected obviously by the parameters while the melting and crystallization behavior of the specimens were little affected. For the wettability, it was also little affected by the printing parameter except for the printing speed. Increasing the printing temperature and the filling density or reducing the printing speed and the layer thickness could improve both the mechanical properties and the thermal stability of the FDM 3D printed PLA/ROA composite specimen; reducing the deposition angle could also improve the mechanical properties while having little effect on the thermal stability of the specimen. 相似文献
7.
Three-dimensional (3D) printing is a frontier manufacturing approach with great potential to benefit biomedical and patient care sectors. In the last decades, different types of biomedical materials were investigated in purpose of developing medical tools and devices. The present study attempts to assess mechanical performances (namely: tensile, compression, and flexural) of the newly developed chitosan-reinforced poly-lactic-acid (PLA) scaffolds by using fused filament fabrication (FFF) based 3D printing technology. Specifically, the effects of chitosan loading, infill density and annealing temperature on mechanical behavior of PLA composite scaffolds are investigated via design of experiments. Moreover, fracture behavior under various load types is studied with the help of selective electron microscopy. It is found that the strength of the produced composite samples depends significantly on the loading of chitosan and infill density, while annealing temperature does not affect mechanical response. Overall, the developed PLA composite scaffolds are mechanically efficient and they appear suitable for clinical purposes. 相似文献
8.
In this work, three-dimensional (3D) printing system based on fused deposition modeling (FDM) is used for the fabrication of conductive polymer nanocomposites. This technology consists in the additive multilayer deposition of polymeric nanocomposite based on poly(lactic acid) (PLA) and graphene by means of a in house made low-cost commercial bench-top 3D printer. Further, 3D printed PLA/graphene nanocomposites containing 10 wt% graphene in PLA matrix were characterized for their mechanical, electrical and electromagnetic induction shielding properties of the nanocomposite. Furthermore X-ray computed micro-tomography analyses showed that printed samples have good dimensional accuracy and are significantly closer to the predefined design and the results of scanning electron microscopy (SEM) printed samples showed a uniform dispersion of graphene in PLA matrix The proposed material has uniquely advantageous when implemented in 3D printed structures, because incorporation of multifunctional graphene has been shown to substantially improve the properties of the resulting nanocomposite. 相似文献
9.
Wangwang Yu Mengqian Li Wen Lei Yongzhe Pu Kangjun Sun Yilong Ma 《Molecules (Basel, Switzerland)》2022,27(9)
In order to improve the properties of wood flour (WF)/poly(lactic acid) (PLA) 3D-printed composites, WF was treated with a silane coupling agent (KH550) and acetic anhydride (Ac2O), respectively. The effects of WF modification and the addition of acrylicester resin (ACR) as a toughening agent on the flowability of WF/PLA composite filament and the mechanical, thermal, dynamic mechanical thermal and water absorption properties of fused deposition modeling (FDM) 3D-printed WF/PLA specimens were investigated. The results indicated that the melt index (MI) of the specimens decreased after WF pretreatment or the addition of ACR, while the die swell ratio increased; KH550-modified WF/PLA had greater tensile strength, tensile modulus and impact strength, while Ac2O-modified WF/PLA had greater tensile modulus, flexural strength, flexural modulus and impact strength than unmodified WF/PLA; after the addition of ACR, all the strengths and moduli of WF/PLA could be improved; after WF pretreatment or the addition of ACR, the thermal decomposition temperature, storage modulus and glass transition temperature of WF/PLA were all increased, and water absorption was reduced. 相似文献
10.
Effect of poly (lactic acid)‐graft‐glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites 下载免费PDF全文
The main aim of this study was to synthesis of poly (lactic acid) (PLA)‐graft‐glycidyl methacrylate (GMA) as well as its influence on the properties of PLA/banana fiber biocomposites. PLA‐graft‐GMA graft copolymer (GC) was synthesized by melt blending PLA with GMA using benzoyl peroxide and dicumyl peroxide as initiators. Graft copolymerization was confirmed by FTIR and 1H‐NMR spectroscopic studies. PLA/silane treated banana fiber (SiB) biocomposites with various GC concentrations were prepared by melt blending followed by injection molding techniques. The influence of GC content on the mechanical, thermal and moisture resistance properties of the composite was investigated. The addition of 15 wt% GC content in the biocomposite provided optimum tensile and flexural strength, which is attributed to the greater compatibility between fiber and PLA matrix. The thermal properties of biocomposites have been evaluated using thermogravimetric analysis which provided evidence of improved interfacial adhesion between SiB and PLA by the addition of GC. Additionally, GC enhanced the moisture absorption resistance of biocomposites. These results indicated that GC is indeed a good candidate as a compatibilizing agent to improve the compatibility in PLA/fiber biocomposites. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(l-lactic acid) (PLA) have attracted much interest in recent years since they are biodegradable, thus can replace synthetic non-degradable materials. In this study, improvements of PHBV, mechanical, phase inversions, and rheological properties were investigated after blending with PLA in varying ratio’s. Three different blends of commercially available PLAs with 92–98% l-lactide units and one grade of PHB with 5% valerate content were blended using a micro-compounder at 175 °C. The composition of PHBV in blends ranged from 50% to 80%. With the addition of PLA, increases in the flexural strength and elastic modulus were observed for several blends, while minor to no changes were detected in the elongation at break and tensile strength as compared to pure PHBV material. Like many conventional plastics, the complex viscosity decreased with increasing rotational frequency due to decreasing entanglements and molecular weight. The complex viscosity with respect to time was very stable for the blends, but no improvements in the PHBV viscosity were observed with the addition of PLA at 170 °C. Three phase inversion models were used to predict the continuity of the blends, and the results showed both dual- and PLA-continuity phase for the blends. In summary, the mechanical results showed improvements in the tensile and flexural properties, while the rheological observation showed minor improvements in the complex viscosity for numerous concentrations. 相似文献
12.
This study analyzed the electrical properties of a multiple‐cells using the electric cell‐substrate impedance sensing, a scalable three‐dimensional electrode array and an equivalent circuit model (ECM). The experimental results validated the accuracy and validity of the extraction method for the ECM. The ECM simulation results using the electrical properties extracted by measuring 52 HeLa cells successfully forecasted the impedance magnitudes and phases for 15, 29, 78, and 98 HeLa cells. Comparing the ECM simulations and measurements, the maximum average errors in magnitude and phase were 3.06 % and 4.67 %, suggesting the number of HeLa cells can be classified by their electrical properties. 相似文献
13.
Nowadays, scientific and technological efforts are being carried out to diminish serious ecological problems caused by indiscriminate use of non-biocompostable polymers in the packaging industry. In this sense, novel biodegradable blends of different composition based on poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and tributyrin (TB) are developed and here proposed as an eco-friendly alternative. Materials are characterized by fracture experiments under quasi-static and biaxial impact loading. Fracture behavior is analyzed together with thermal, tensile and water permeation properties to evaluate their potential in-service performance. TB_PLA/PHB blends with 15 wt% TB exhibit better permeation and fracture toughness than currently used bio-based polymers, being in the range of polyethylene properties. Results highlight the potential of these new blends broadening the current application field of PLA. 相似文献
14.
The Scanning Electron Microscope (SEM) is an excellent tool for the characterization of surfaces. In order to evaluate the
accuracy of the reconstruction of a 3D dataset, a known depth standard for tactile depth measurement devices with a step height
of 92 μm was investigated by SEM. The reconstruction of surfaces using two tilted images (StereoCreator) or three different
tilted images (TriCreator) is affected by the tilt angle itself, the image resolution and the working distance. We compare
the results of the obtained data from different combinations of tilt angles and working distances in relation with the type
of reconstruction…. To compare the accuracy and reliability of the 3D datasets from the new Infinite Focus Measurement Machine
(IFM) with the datasets reconstructed from the well known SEM technique, we utilized a groove standard with six trapezoidal
grooves with known width and depth certified by the PTB – Braunschweig – Germany (Physikalisch – Technische Bundesanstalt
Braunschweig – calibration mark 035PTB04 – measured with a traceable stylus instrument according to DIN EN ISO 3274). The
great advantage of the SEM/ESEM (Environmental Scanning Electron Microscope) and IFM technique compared to tactile-profile-measurement
instruments is that it is a non-tactile and a non-destructive method. The potential and accuracy of these methods in comparison
to tactile measurement systems is shown and discussed in this paper. 相似文献
15.
Wangwang Yu Lili Dong Wen Lei Yuhan Zhou Yongzhe Pu Xi Zhang 《Molecules (Basel, Switzerland)》2021,26(11)
To develop a new kind of environment-friendly composite filament for fused deposition modeling (FDM) 3D printing, rice straw powder (RSP)/poly(lactic acid) (PLA) biocomposites were FDM-3D-printed, and the effects of the particle size and pretreatment of RSP on the properties of RSP/PLA biocomposites were investigated. The results indicated that the 120-mesh RSP/PLA biocomposites (named 120#RSP/PLA) showed better performance than RSP/PLA biocomposites prepared with other RSP sizes. Infrared results showed that pretreatment of RSP by different methods was successful, and scanning electron microscopy indicated that composites prepared after pretreatment exhibited good interfacial compatibility due to a preferable binding force between fiber and matrix. When RSP was synergistically pretreated by alkaline and ultrasound, the composite exhibited a high tensile strength, tensile modulus, flexural strength, and flexural modulus of 58.59, 568.68, 90.32, and 3218.12 MPa, respectively, reflecting an increase of 31.19%, 16.48%, 18.75%, and 25.27%, respectively, compared with unmodified 120#RSP/PLA. Pretreatment of RSP also improved the thermal stability and hydrophobic properties, while reducing the water absorption of 120#RSP/PLA. This work is believed to provide highlights of the development of cost-effective biocomposite filaments and improvement of the properties of FDM parts. 相似文献
16.
In our early researches, lanthanum and cerium could enter plant and bind to porphyrin of chlorophyll to form Ln3+-chllorophyll. La and Ce greatly increase photosystem II (PSII) activity and PSII electron transport rate, and the fluorescence emission peaks of PSII are blue-shifted [1—4]. Do REEs coordinate with PSII reaction center complex in vivo? Moreover, do REEs coordinate with D1(30 kD)/D2(32 kD)/Cytb559 (~9 kD) reaction center complex of site of producing pri-mary reaction-p… 相似文献
17.
Chang‐Ming Dong Kun‐Yuan Qiu Zhong‐Wei Gu Xin‐De Feng 《Journal of polymer science. Part A, Polymer chemistry》2000,38(23):4179-4184
D ,L ‐3‐Methylglycolide (MG) was synthesized via two step reactions with a good yield (42%). It was successfully polymerized in bulk with stannous octoate as a catalyst at 110 °C. The effects of the polymerization time and catalyst concentration on the molecular weight and monomer conversion were studied. Poly(D ,L ‐lactic acid‐co‐glycolic acid) (D ,L ‐PLGA50; 50/50 mol/mol) copolymers were successfully synthesized from the homopolymerization of MG with high polymerization rates and high monomer conversions under moderate polymerization conditions. 1H NMR spectroscopy indicated that the bulk ring‐opening polymerization of MG conformed to the coordination–insertion mechanism. 13C NMR spectra of D ,L ‐PLGA50 copolymers obtained under different experimental conditions revealed that the copolymers had alternating structures of lactyl and glycolyl. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4179–4184, 2000 相似文献
18.
The radical-molecule reaction mechanism of CHCl(2) and CCl(3) with NO(2) have been explored theoretically at the B3LYP/6-311G(d,p) and MC-QCISD (single-point) levels. For the singlet potential energy surface (PES) of CHCl(2) + NO(2) reaction, the association of CHCl(2) with NO(2) was found to be a barrierless carbon-to-nitrogen approach forming an energy-rich adduct a (HCl(2)CNO(2)) followed by isomerization to b(1) (trans-cis-HCl(2)CONO), which can easily interconvert to b(2), b(3), and b(4). Subsequently, the most feasible pathway is the 1,3-chlorine migration associated with N-O1 bond cleavage of b(1) leading to P(1) (CHClO + ClNO). The second competitive pathway is the 1,4-chlorine migration along with N-O1 bond rupture of b(4) giving rise to P(2) (CHClO + ClON). Moreover, some of P(1) and P(2) can further dissociate to give P(6) (CHClO + Cl + NO). The lesser followed competitive channel is the 1,3-H-shift from C to N atom along with N-O1 bond rupture of b(1) to form P(3) (CCl(2)O + HNO). The concerted 1,4-H-shift accompanied by N-O1 bond fission of b(3) to product P(4) (CCl(2)O + HON) is even much less feasible. For the singlet PES of CCl(3) + NO(2) reaction, the only primary product is found to be P(1) (CCl(2)O + ClNO), which can lead to P(2) (CCl(2)O + Cl + NO) via dissociation of ClNO. The obtained major products CHClO and CCl(2)O for CHCl(2) + NO(2) and CCl(3) + NO(2) reactions, respectively, are in good agreement with kinetic detection in experiment. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. Because the rate-determining transition state involved in the feasible pathways lie above the reactants R, the title reactions may be important in high-temperature processes. The similarities and discrepancies among the CH(n)Cl(3-n) + NO(2) (n == 0-2) reactions are discussed in terms of the substitution effect. The present study may be helpful for further experimental investigation of the title reactions. 相似文献
19.
It was studied by spectroscopy that PSII reaction center complex consisting of three polypeptides, D1, D2 and Cytb559, were purified from PSII particle of CeCl3 treated spinach. The results of the experiment show that Ce3+ could improve the growth of spinach, and accelerate electron transport of PSII particles. Of chl-a of UV-Vis spectrum of
D1/D2/Cytb559 complex, Soret band was blue-shifted by 3 nm and Q band by 2 nm, respectively, and the fluorescence emission
peak was blue-shifted by 5 nm in CeCl3-treated spinach compared with the one in control. By the extended X-ray absorption fine structure (EXAFS) spectroscopy methods,
it has been found that Ce3+ is coordinated with 8 nitrogen atoms in the first coordination shell with Ce-N bond length of 0.253 nm, and Ce3+ with 6 oxygen atoms in the second coordination shell with Ce-O bond length of 0.32 nm. However, the secondary structure of
D1/D2/Cytb559 complex by circular dichroism (CD) spectroscopy has no significant change after CeCl3 treated. It might be that Ce3+ binds to porphyrin rings of chlorophyll and oxygen of amino acid residue of polypeptide in D1/D2/Cytb559 complex, and then
accelerates the primary reaction of PSII, intensifies function of P680+ primary electron donor of D1/D2/Cytb559, but there is little change in conformation of PSII reaction center complex. 相似文献
20.
Rania Aro Amandine Nachtergael Claudio Palmieri Laurence Ris Pierre Duez 《Molecules (Basel, Switzerland)》2022,27(21)
Tetrahydroisoquinoline (THIQ) alkaloids and their derivatives have a structural similarity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a well-known neurotoxin. THIQs seem to present a broad range of actions in the brain, critically dependent on their catechol moieties and metabolism. These properties make it reasonable to assume that an acute or chronic exposure to some THIQs might lead to neurodegenerative diseases including essential tremor (ET). We developed a method to search for precursor carbonyl compounds produced during the Maillard reaction in overcooked meats to study their reactivity with endogenous amines and identify the reaction products. Then, we predicted in silico their pharmacokinetic and toxicological properties toward the central nervous system. Finally, their possible neurological effects on a novel in vitro 3D neurosphere model were assessed. The obtained data indicate that meat is an alkaloid precursor, and we identified the alkaloid 1-benzyl-1,2,3,4-tetrahydroisoquinoline-6,7-diol (1-benz-6,7-diol THIQ) as the condensation product of phenylacetaldehyde with dopamine; in silico study of 1-benz-6,7-diol-THIQ reveals modulation of dopamine receptor D1 and D2; and in vitro study of 1-benz-6,7-diol-THIQ for cytotoxicity and oxidative stress induction does not show any difference after 24 h contact for all tested concentrations. To conclude, our in vitro data do not support an eventual neurotoxic effect for 1-benz-6,7-diol-THIQ. 相似文献