首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The German Federal Institute for Risk Assessment (BfR) has developed a Decision Support System (DSS) to assess certain hazardous properties of pure chemicals, including skin and eye irritation/corrosion. The BfR-DSS is a rule-based system that could be used for the regulatory classification of chemicals in the European Union. The system is based on the combined use of two predictive approaches: exclusion rules based on physicochemical cut-off values to identify chemicals that do not exhibit a certain hazard (e.g., skin irritation/corrosion), and inclusion rules based on structural alerts to identify chemicals that do show a particular toxic potential. The aim of the present study was to evaluate the structural inclusion rules implemented in the BfR-DSS for the prediction of skin irritation and corrosion. The following assessments were performed: (a) a confirmation of the structural rules by rederiving them from the original training set (1358 substances), and (b) an external validation by using a test set of 200 chemicals not used in the derivation of the rules. It was found as a result that the test data set did not match the training set relative to the inclusion of structural alerts associated with skin irritation/corrosion, albeit some skin irritants were in the test set.  相似文献   

2.
The German Federal Institute for Risk Assessment (BfR) has developed a Decision Support System (DSS) to assess certain hazardous properties of pure chemicals, including skin and eye irritation/corrosion. The BfR–DSS is a rule-based system that could be used for the regulatory classification of chemicals in the European Union. The system is based on the combined use of two predictive approaches: exclusion rules based on physicochemical cut-off values to identify chemicals that do not exhibit a certain hazard (e.g., skin irritation/corrosion), and inclusion rules based on structural alerts to identify chemicals that do show a particular toxic potential. The aim of the present study was to evaluate the structural inclusion rules implemented in the BfR–DSS for the prediction of skin irritation and corrosion. The following assessments were performed: (a) a confirmation of the structural rules by rederiving them from the original training set (1358 substances), and (b) an external validation by using a test set of 200 chemicals not used in the derivation of the rules. It was found as a result that the test data set did not match the training set relative to the inclusion of structural alerts associated with skin irritation/corrosion, albeit some skin irritants were in the test set.  相似文献   

3.
Repeated dose toxicity (RDT) is one of the most important hazard endpoints in the risk assessment of chemicals. However, due to the complexity of the endpoints associated with whole body assessment, it is difficult to build up a mechanistically transparent structure–activity model. The category approach, based on mechanism information, is considered to be an effective approach for data gap filling for RDT by read-across. Therefore, a library of toxicological categories was developed using experimental RDT data for 500 chemicals and mechanistic knowledge of the effects of these chemicals on different organs. As a result, 33 categories were defined for 14 types of toxicity, such as hepatotoxicity, hemolytic anemia, etc. This category library was then incorporated in the Hazard Evaluation Support System (HESS) integrated computational platform to provide mechanistically reasonable predictions of RDT values for untested chemicals. This article describes the establishment of a category library and the associated HESS functions used to facilitate the mechanistically reasonable grouping of chemicals and their subsequent read-across.  相似文献   

4.
5.

In 2001, the European Commission published a policy statement ("White Paper") on future chemicals regulation and risk reduction that proposed the use of non-animal test systems and tailor-made testing approaches, including (Q)SARs, to reduce financial costs and the number of test animals employed. The authors have compiled a database containing data submitted within the EU chemicals notification procedure. From these data, (Q)SARs for the prediction of local irritation/corrosion and/or sensitisation potential were developed and published. These (Q)SARs, together with an expert system supporting their use, will be submitted for official validation and application within regulatory hazard assessment strategies. The main features are: ? two sets of structural alerts for the prediction of skin sensitisation hazard classification as defined by the European risk phrase R43, comprising 15 rules for chemical substructures deemed to be sensitising by direct action with cells or proteins, and three rules for substructures acting indirectly, i.e., requiring biochemical transformation; ? a decision support system (DSS) for the prediction of skin and/or eye lesion potential built from information extracted from our database. This DSS combines SARs defining reactive chemical substructures relevant for local lesions to be classified, and QSARs for the prediction of the absence of such a potential. The role of the BfR database, and (Q)SARs derived from it, in the use of current and future (EU) testing strategies for irritation and sensitisation is discussed.  相似文献   

6.
In 2001, the European Commission published a policy statement ("White Paper") on future chemicals regulation and risk reduction that proposed the use of non-animal test systems and tailor-made testing approaches, including (Q)SARs, to reduce financial costs and the number of test animals employed. The authors have compiled a database containing data submitted within the EU chemicals notification procedure. From these data, (Q)SARs for the prediction of local irritation/corrosion and/or sensitisation potential were developed and published. These (Q)SARs, together with an expert system supporting their use, will be submitted for official validation and application within regulatory hazard assessment strategies. The main features are: two sets of structural alerts for the prediction of skin sensitisation hazard classification as defined by the European risk phrase R43, comprising 15 rules for chemical substructures deemed to be sensitising by direct action with cells or proteins, and three rules for substructures acting indirectly, i.e., requiring biochemical transformation; a decision support system (DSS) for the prediction of skin and/or eye lesion potential built from information extracted from our database. This DSS combines SARs defining reactive chemical substructures relevant for local lesions to be classified, and QSARs for the prediction of the absence of such a potential. The role of the BfR database, and (Q)SARs derived from it, in the use of current and future (EU) testing strategies for irritation and sensitisation is discussed.  相似文献   

7.
8.
Abstract

This article describes the possibility of estimating whether or not a mixture of nonreactive volatile organic chemicals (NRVOC) is likely to elicit complaints of sensory irritation in humans. For this estimation we rely on: a) the sensory irritating potency of individual NRVOC can be estimated from a variety of physicochemical properties of these chemicals, b) at low exposure concentrations, the additivity rule can be applied using the potency of each chemical in a mixture and c) a threshold concentration exists below which no sensory irritation will occur. We used this estimating approach and we compared the results obtained with those obtained experimentally in humans exposed to a well defined mixture. The approach presented can be used to arrive at a decision as to whether or not exposure to a mixture of NRVOC is likely to result in sensory irritation complaints by humans, either in the general indoor air situation or for industrial workers.  相似文献   

9.
The proposed REACH regulation within the European Union (EU) aims to minimise the number of laboratory animals used for human hazard and risk assessment while ensuring adequate protection of human health and the environment. One way to achieve this goal is to develop non-testing methods, such as (quantitative) structure–activity relationships ([Q]SARs), suitable for identifying toxicological hazard from chemical structure and physicochemical properties alone. A database containing data submitted within the EU New Chemicals Notification procedure was compiled by the German Bundesinstitut für Risikobewertung (BfR). On the basis of these data, the BfR built a decision support system (DSS) for the prediction of several toxicological endpoints. For the prediction of eye irritation and corrosion potential, the DSS contains 31 physicochemical exclusion rules evaluated previously by the European Chemicals Bureau (ECB), and 27 inclusion rules that define structural alerts potentially responsible for eye irritation and/or corrosion. This work summarises the results of a study carried out by the ECB to assess the performance of the BfR structural rulebase. The assessment included: (a) evaluation of the structural alerts by using the training set of 1341 substances with experimental data for eye irritation and corrosion; and (b) external validation by using an independent test set of 199 chemicals. Recommendations are made for the further development of the structural rules in order to increase the overall predictivity of the DSS.  相似文献   

10.
The proposed REACH regulation within the European Union (EU) aims to minimise the number of laboratory animals used for human hazard and risk assessment while ensuring adequate protection of human health and the environment. One way to achieve this goal is to develop non-testing methods, such as (quantitative) structure-activity relationships ([Q]SARs), suitable for identifying toxicological hazard from chemical structure and physicochemical properties alone. A database containing data submitted within the EU New Chemicals Notification procedure was compiled by the German Bundesinstitut für Risikobewertung (BfR). On the basis of these data, the BfR built a decision support system (DSS) for the prediction of several toxicological endpoints. For the prediction of eye irritation and corrosion potential, the DSS contains 31 physicochemical exclusion rules evaluated previously by the European Chemicals Bureau (ECB), and 27 inclusion rules that define structural alerts potentially responsible for eye irritation and/or corrosion. This work summarises the results of a study carried out by the ECB to assess the performance of the BfR structural rulebase. The assessment included: (a) evaluation of the structural alerts by using the training set of 1341 substances with experimental data for eye irritation and corrosion; and (b) external validation by using an independent test set of 199 chemicals. Recommendations are made for the further development of the structural rules in order to increase the overall predictivity of the DSS.  相似文献   

11.
Public domain and commercial in silico tools were compared for their performance in predicting the skin sensitization potential of chemicals. The packages were either statistical based (Vega, CASE Ultra) or rule based (OECD Toolbox, Toxtree, Derek Nexus). In practice, several of these in silico tools are used in gap filling and read-across, but here their use was limited to make predictions based on presence/absence of structural features associated to sensitization. The top 400 ranking substances of the ATSDR 2011 Priority List of Hazardous Substances were selected as a starting point. Experimental information was identified for 160 chemically diverse substances (82 positive and 78 negative). The prediction for skin sensitization potential was compared with the experimental data. Rule-based tools perform slightly better, with accuracies ranging from 0.6 (OECD Toolbox) to 0.78 (Derek Nexus), compared with statistical tools that had accuracies ranging from 0.48 (Vega) to 0.73 (CASE Ultra – LLNA weak model). Combining models increased the performance, with positive and negative predictive values up to 80% and 84%, respectively. However, the number of substances that were predicted positive or negative for skin sensitization in both models was low. Adding more substances to the dataset will increase the confidence in the conclusions reached. The insights obtained in this evaluation are incorporated in a web database www.asopus.weebly.com that provides a potential end user context for the scope and performance of different in silico tools with respect to a common dataset of curated skin sensitization data.  相似文献   

12.
Direct infusion mass spectrometry (DIMS)-based untargeted metabolomics measures many hundreds of metabolites in a single experiment. While every effort is made to reduce within-experiment analytical variation in untargeted metabolomics, unavoidable sources of measurement error are introduced. This is particularly true for large-scale multi-batch experiments, necessitating the development of robust workflows that minimise batch-to-batch variation. Here, we conducted a purpose-designed, eight-batch DIMS metabolomics study using nanoelectrospray (nESI) Fourier transform ion cyclotron resonance mass spectrometric analyses of mammalian heart extracts. First, we characterised the intrinsic analytical variation of this approach to determine whether our existing workflows are fit for purpose when applied to a multi-batch investigation. Batch-to-batch variation was readily observed across the 7-day experiment, both in terms of its absolute measurement using quality control (QC) and biological replicate samples, as well as its adverse impact on our ability to discover significant metabolic information within the data. Subsequently, we developed and implemented a computational workflow that includes total-ion-current filtering, QC-robust spline batch correction and spectral cleaning, and provide conclusive evidence that this workflow reduces analytical variation and increases the proportion of significant peaks. We report an overall analytical precision of 15.9 %, measured as the median relative standard deviation (RSD) for the technical replicates of the biological samples, across eight batches and 7 days of measurements. When compared against the FDA guidelines for biomarker studies, which specify an RSD of <20 % as an acceptable level of precision, we conclude that our new workflows are fit for purpose for large-scale, high-throughput nESI DIMS metabolomics studies.  相似文献   

13.
Current guidance for the estimation of dermal absorption (DA) of pesticides recommends the use of default values, read-across of information between formulations and in vitro testing. While QSARs exist to estimate percutaneous absorption, their use is currently not encouraged. Therefore, the potential of publicly available models for DA estimation was investigated based on data from 564 human in vitro DA experiments on pesticides. The classic Potts Guy model, the correction of Cleek Bunge for highly lipophilic chemicals, the mechanistic model of Mitragotri, and the COSMOS model were used to estimate the permeability coefficient kp. Different approaches were explored to calculate the percentage of external dose absorbed. IH SkinPerm was examined as stand-alone model. The models generally failed to accurately predict experimental values. For 30–40% of the predictions, there was overestimation by one order of magnitude. Three models underpredicted >10% of the cases, the remaining models <5%. DA of hydrophilic substances was typically underpredicted. Overprediction was more prominent for solid preparations and suspensions. The molecular weight, irritation potential and skin thickness did not correlate with the models’ predictivity. Of the models investigated, IH SkinPerm performed best with 38% of the predictions within one order of magnitude and 2% underpredicted cases.  相似文献   

14.
A round-robin exercise was conducted within the CALEIDOS LIFE project. The participants were invited to assess the hazard posed by a substance, applying in silico methods and read-across approaches. The exercise was based on three endpoints: mutagenicity, bioconcentration factor and fish acute toxicity. Nine chemicals were assigned for each endpoint and the participants were invited to complete a specific questionnaire communicating their conclusions. The interesting aspect of this exercise is the justification behind the answers more than the final prediction in itself. Which tools were used? How did the approach selected affect the final answer?  相似文献   

15.
While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.  相似文献   

16.
Western blotting is a proven technique essential to a significant proportion of molecular biology projects. However, as results accumulate over the years, managing data can become daunting. Recognizing that the needs of a scientist working with Western blotting results are conceptually the same as those of a professional photographer managing a summer's worth of wedding photos, we report here a new workflow for managing Western blotting results using professional photo management software. The workflow involves (i) scanning all film‐based results; (ii) importing the scans into the software; (iii) processing the scans; (iv) tagging the files with metadata, and (v) creating appropriate “smart‐albums.” Advantages of this system include space savings (both on our hard drives and on our desks), safer archival, quicker access, and easier sharing of the results. In addition, metadata‐based workflows improve cross‐experiment discovery and enable questions like “show me all blots labelled with antibody X” or “show me all experiments featuring protein Y”. As project size and breadth increase, workflows delegating results management to the computer will become more and more important so that scientists can keep focussing on science.  相似文献   

17.
18.
We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection. We evaluated the success of our predictions by method, chemotype, and relevance of publicly available data. For the overall data set, ensemble docking, visual inspection, and molecular dynamics guided pose prediction performed the best with overall mean RMSDs of 2.4, 2.2, and 2.2 Å respectively. For several individual challenge molecules, the best performing method is evaluated in light of that particular ligand. We also describe the protein, ligand, and public information data preparations that are typical of our binding mode prediction workflow.  相似文献   

19.
Regulatory agencies are charged with addressing the endocrine disrupting potential of large numbers of chemicals for which there is often little or no data on which to make decisions. Prioritizing the chemicals of greatest concern for further screening for potential hazard to humans and wildlife is an initial step in the process. This paper presents the collection of in vitro data using assays optimized to detect low affinity estrogen receptor (ER) binding chemicals and the use of that data to build effects-based chemical categories following QSAR approaches and principles pioneered by Gilman Veith and colleagues for application to environmental regulatory challenges. Effects-based chemical categories were built using these QSAR principles focused on the types of chemicals in the specific regulatory domain of concern, i.e. non-steroidal industrial chemicals, and based upon a mechanistic hypothesis of how these non-steroidal chemicals of seemingly dissimilar structure to 17ß-estradiol (E2) could interact with the ER via two distinct binding types. Chemicals were also tested to solubility thereby minimizing false negatives and providing confidence in determination of chemicals as inactive. The high-quality data collected in this manner were used to build an ER expert system for chemical prioritization described in a companion article in this journal.  相似文献   

20.
A group contribution-based quantitative structure–property relationship (QSPR) for the hexadecane–air equilibrium partition coefficients (L) of organic chemicals is developed using the iterative fragment selection (IFS) approach. This new QSPR includes in its training and external validation data sets L values for a large number of structurally complex chemicals measured by the same group using consistent methods. The resulting QSPR has better predictive power than other prediction methods trained primarily using data for chemicals of simpler structures, and measurements of L values from diverse sources. For a subset of chemicals in which the L values have non-additive effects caused by intramolecular hydrogen bonds, the new QSPR gives much better performance in comparison to the most commonly used prediction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号