首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the problem of optimal scaling of the proposal variance for multidimensional random walk Metropolis algorithms. It is well known, for a wide range of continuous target densities, that the optimal scaling of the proposal variance leads to an average acceptance rate of 0.234. Therefore a natural question is, do similar results hold for target densities which have discontinuities? In the current work, we answer in the affirmative for a class of spherically constrained target densities. Even though the acceptance probability is more complicated than for continuous target densities, the optimal scaling of the proposal variance again leads to an average acceptance rate of 0.234.  相似文献   

2.
Markov chain Monte Carlo (MCMC) algorithms offer a very general approach for sampling from arbitrary distributions. However, designing and tuning MCMC algorithms for each new distribution can be challenging and time consuming. It is particularly difficult to create an efficient sampler when there is strong dependence among the variables in a multivariate distribution. We describe a two-pronged approach for constructing efficient, automated MCMC algorithms: (1) we propose the “factor slice sampler,” a generalization of the univariate slice sampler where we treat the selection of a coordinate basis (factors) as an additional tuning parameter, and (2) we develop an approach for automatically selecting tuning parameters to construct an efficient factor slice sampler. In addition to automating the factor slice sampler, our tuning approach also applies to the standard univariate slice samplers. We demonstrate the efficiency and general applicability of our automated MCMC algorithm with a number of illustrative examples. This article has online supplementary materials.  相似文献   

3.
This paper extends some adaptive schemes that have been developed for the Random Walk Metropolis algorithm to more general versions of the Metropolis-Hastings (MH) algorithm, particularly to the Metropolis Adjusted Langevin algorithm of Roberts and Tweedie (1996). Our simulations show that the adaptation drastically improves the performance of such MH algorithms. We study the convergence of the algorithm. Our proves are based on a new approach to the analysis of stochastic approximation algorithms based on mixingales theory.   相似文献   

4.
This article is motivated by the difficulty of applying standard simulation techniques when identification constraints or theoretical considerations induce covariance restrictions in multivariate models. To deal with this difficulty, we build upon a decomposition of positive definite matrices and show that it leads to straightforward Markov chain Monte Carlo samplers for restricted covariance matrices. We introduce the approach by reviewing results for multivariate Gaussian models without restrictions, where standard conjugate priors on the elements of the decomposition induce the usual Wishart distribution on the precision matrix and vice versa. The unrestricted case provides guidance for constructing efficient Metropolis–Hastings and accept-reject Metropolis–Hastings samplers in more complex settings, and we describe in detail how simulation can be performed under several important constraints. The proposed approach is illustrated in a simulation study and two applications in economics. Supplemental materials for this article (appendixes, data, and computer code) are available online.  相似文献   

5.
    
The Monte Carlo within Metropolis (MCwM) algorithm, interpreted as a perturbed Metropolis–Hastings (MH) algorithm, provides an approach for approximate sampling when the target distribution is intractable. Assuming the unperturbed Markov chain is geometrically ergodic, we show explicit estimates of the difference between the nth step distributions of the perturbed MCwM and the unperturbed MH chains. These bounds are based on novel perturbation results for Markov chains which are of interest beyond the MCwM setting. To apply the bounds, we need to control the difference between the transition probabilities of the two chains and to verify stability of the perturbed chain.  相似文献   

6.
In this article, we propose generalized Bayesian dynamic factor models for jointly modeling mixed-measurement time series. The framework allows mixed-scale measurements associated with each time series, with different measurements having different distributions in the exponential family conditionally on time-varying latent factor(s). Efficient Bayesian computational algorithms are developed for posterior inference on both the latent factors and model parameters, based on a Metropolis–Hastings algorithm with adaptive proposals. The algorithm relies on a Greedy Density Kernel Approximation and parameter expansion with latent factor normalization. We tested the framework and algorithms in simulated studies and applied them to the analysis of intertwined credit and recovery risk for Moody’s rated firms from 1982 to 2008, illustrating the importance of jointly modeling mixed-measurement time series. The article has supplementary materials available online.  相似文献   

7.
Process monitoring and control requires the detection of structural changes in a data stream in real time. This article introduces an efficient sequential Monte Carlo algorithm designed for learning unknown changepoints in continuous time. The method is intuitively simple: new changepoints for the latest window of data are proposed by conditioning only on data observed since the most recent estimated changepoint, as these observations carry most of the information about the current state of the process. The proposed method shows improved performance over the current state of the art. Another advantage of the proposed algorithm is that it can be made adaptive, varying the number of particles according to the apparent local complexity of the target changepoint probability distribution. This saves valuable computing time when changes in the changepoint distribution are negligible, and enables rebalancing of the importance weights of existing particles when a significant change in the target distribution is encountered. The plain and adaptive versions of the method are illustrated using the canonical continuous time changepoint problem of inferring the intensity of an inhomogeneous Poisson process, although the method is generally applicable to any changepoint problem. Performance is demonstrated using both conjugate and nonconjugate Bayesian models for the intensity. Appendices to the article are available online, illustrating the method on other models and applications.  相似文献   

8.
In this paper we perform a spectral analysis for the kernel operator associated with the transition kernel for the Metropolis–Hastings algorithm that uses a fixed, location independent proposal distribution. Our main result is to establish the spectrum of the kernel operator T in the continuous case, thereby generalizing the results obtained by Liu in (Statist. Comput. 6, 113–119 1996) for the finite case.  相似文献   

9.
本文研究了Dirichlet分布总体的参数和其他感光趣的量的贝叶斯估计。在参数的有实际意义的函数上设置均匀的先验分布,对适当变换后的参数用Metropolis算法得到马尔可夫链蒙特卡罗后验样本,由此即得参数和其他感兴趣的量的贝叶斯估计。  相似文献   

10.
We investigate the use of adaptive MCMC algorithms to automatically tune the Markov chain parameters during a run. Examples include the Adaptive Metropolis (AM) multivariate algorithm of Haario, Saksman, and Tamminen (2001), Metropolis-within-Gibbs algorithms for nonconjugate hierarchical models, regionally adjusted Metropolis algorithms, and logarithmic scalings. Computer simulations indicate that the algorithms perform very well compared to nonadaptive algorithms, even in high dimension.  相似文献   

11.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

12.
We study the integration of functions with respect to an unknown density. Information is available as oracle calls to the integrand and to the non-normalized density function. We are interested in analyzing the integration error of optimal algorithms (or the complexity of the problem) with emphasis on the variability of the weight function. For a corresponding large class of problem instances we show that the complexity grows linearly in the variability, and the simple Monte Carlo method provides an almost optimal algorithm. Under additional geometric restrictions (mainly log-concavity) for the density functions, we establish that a suitable adaptive local Metropolis algorithm is almost optimal and outperforms any non-adaptive algorithm.  相似文献   

13.
Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of hierarchical Bayesian paid–incurred claims models, combining the claims reserving models of Hertig (1985) and Gogol (1993). In the process we extend the independent log-normal model of Merz and Wüthrich (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula paid–incurred claims model.In this way the paper makes two main contributions: firstly we develop an extended class of model structures for the paid–incurred chain ladder models where we develop precisely the Bayesian formulation of such models; secondly we explain how to develop advanced Markov chain Monte Carlo sampling algorithms to make inference under these copula dependence PIC models accurately and efficiently, making such models accessible to practitioners to explore their suitability in practice. In this regard the focus of the paper should be considered in two parts, firstly development of Bayesian PIC models for general dependence structures with specialised properties relating to conjugacy and consistency of tail dependence across the development years and accident years and between Payment and incurred loss data are developed. The second main contribution is the development of techniques that allow general audiences to efficiently work with such Bayesian models to make inference. The focus of the paper is not so much to illustrate that the PIC paper is a good class of models for a particular data set, the suitability of such PIC type models is discussed in Merz and Wüthrich (2010) and Happ and Wüthrich (2013). Instead we develop generalised model classes for the PIC family of Bayesian models and in addition provide advanced Monte Carlo methods for inference that practitioners may utilise with confidence in their efficiency and validity.  相似文献   

14.
We present an extension of continuous domain Simulated Annealing. Our algorithm employs a globally reaching candidate generator, adaptive stochastic acceptance probabilities, and converges in probability to the optimal value. An application to simulation-optimization problems with asymptotically diminishing errors is presented. Numerical results on a noisy protein-folding problem are included.  相似文献   

15.
While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area that we feel deserves much further attention. Toward this aim, this article proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang–Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains—a feature that both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance of this new parallel adaptive Wang–Landau algorithm is studied in several applications. Through a Bayesian variable selection example, we demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm’s adaptive proposal to induce mode-jumping is illustrated through a Bayesian mixture modeling application. Last, through a two-dimensional Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models. Supplemental materials are available online.  相似文献   

16.
This article presents a Markov chain Monte Carlo algorithm for both variable and covariance selection in the context of logistic mixed effects models. This algorithm allows us to sample solely from standard densities with no additional tuning. We apply a stochastic search variable approach to select explanatory variables as well as to determine the structure of the random effects covariance matrix.

Prior determination of explanatory variables and random effects is not a prerequisite because the definite structure is chosen in a data-driven manner in the course of the modeling procedure. To illustrate the method, we give two bank data examples.  相似文献   

17.
本文讨论多变量非线性贝叶斯动态模型参数估计 ,将 Monte Carlo最优法用于极大似然函数 ,得到未知参数和状态变量的估计  相似文献   

18.
We describe a method for generating independent samples from univariate density functions using adaptive rejection sampling without the log-concavity requirement. The method makes use of the fact that many functions can be expressed as a sum of concave and convex functions. Using a concave-convex decomposition, we bound the log-density by separately bounding the concave and convex parts using piecewise linear functions. The upper bound can then be used as the proposal distribution in rejection sampling. We demonstrate the applicability of the concave-convex approach on a number of standard distributions and describe an application to the efficient construction of sequential Monte Carlo proposal distributions for inference over genealogical trees. Computer code for the proposed algorithms is available online.  相似文献   

19.
Regeneration is a useful tool in Markov chain Monte Carlo simulation because it can be used to side-step the burn-in problem and to construct better estimates of the variance of parameter estimates themselves. It also provides a simple way to introduce adaptive behavior into a Markov chain, and to use parallel processors to build a single chain. Regeneration is often difficult to take advantage of because, for most chains, no recurrent proper atom exists, and it is not always easy to use Nummelin's splitting method to identify regeneration times. This article describes a constructive method for generating a Markov chain with a specified target distribution and identifying regeneration times. As a special case of the method, an algorithm which can be “wrapped” around an existing Markov transition kernel is given. In addition, a specific rule for adapting the transition kernel at regeneration times is introduced, which gradually replaces the original transition kernel with an independence-sampling Metropolis-Hastings kernel using a mixture normal approximation to the target density as its proposal density. Computational gains for the regenerative adaptive algorithm are demonstrated in examples.  相似文献   

20.
Importance sampling is a classical Monte Carlo technique in which a random sample from one probability density, π1, is used to estimate an expectation with respect to another, π. The importance sampling estimator is strongly consistent and, as long as two simple moment conditions are satisfied, it obeys a central limit theorem (CLT). Moreover, there is a simple consistent estimator for the asymptotic variance in the CLT, which makes for routine computation of standard errors. Importance sampling can also be used in the Markov chain Monte Carlo (MCMC) context. Indeed, if the random sample from π1 is replaced by a Harris ergodic Markov chain with invariant density π1, then the resulting estimator remains strongly consistent. There is a price to be paid, however, as the computation of standard errors becomes more complicated. First, the two simple moment conditions that guarantee a CLT in the iid case are not enough in the MCMC context. Second, even when a CLT does hold, the asymptotic variance has a complex form and is difficult to estimate consistently. In this article, we explain how to use regenerative simulation to overcome these problems. Actually, we consider a more general setup, where we assume that Markov chain samples from several probability densities, π1, …, πk, are available. We construct multiple-chain importance sampling estimators for which we obtain a CLT based on regeneration. We show that if the Markov chains converge to their respective target distributions at a geometric rate, then under moment conditions similar to those required in the iid case, the MCMC-based importance sampling estimator obeys a CLT. Furthermore, because the CLT is based on a regenerative process, there is a simple consistent estimator of the asymptotic variance. We illustrate the method with two applications in Bayesian sensitivity analysis. The first concerns one-way random effect models under different priors. The second involves Bayesian variable selection in linear regression, and for this application, importance sampling based on multiple chains enables an empirical Bayes approach to variable selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号