共查询到20条相似文献,搜索用时 0 毫秒
1.
Effect of ZnO and organo-modified montmorillonite on thermal degradation of poly(methyl methacrylate) nanocomposites 总被引:1,自引:0,他引:1
A. Laachachi D. Ruch M. Ferriol J.-M. Lopez Cuesta 《Polymer Degradation and Stability》2009,94(4):670-678
Since a few years ago, a topic of interest consists in developing composites filled with nanofillers to improve thermal degradation and flammability property of poly(methyl methacrylate) (PMMA). In the present work, the effects of ZnO nanoparticles and organo-modified montmorillonite (OMMT) on the thermal degradation of PMMA were investigated by thermogravimetric analysis (TGA). PMMA-ZnO and PMMA-OMMT nanocomposites were prepared by melt blending with different (2, 5, and 10 wt%) loadings. SEM and TEM analyses of nanocomposites were performed in order to investigate the dispersion of nanofillers in the matrix. According to TGA results, the addition of ZnO nanoparticles does not affect the thermal degradation of PMMA under an inert atmosphere. However, in an oxidative atmosphere, two contrary effects were observed, a catalytic effect at lower concentration of ZnO in the PMMA matrix and a stabilizing effect when the ZnO concentration is higher (10 wt%). In contrast, the presence of OMMT stabilizes the thermal degradation of PMMA whatever be the atmosphere. Differential thermal analysis (DTA) curves showed surprising results, because a dramatic change of exothermic reaction of the PMMA degradation process to an endothermic reaction was observed only in the case of OMMT. During the degradation of PMMA-ZnO nanocomposites, pyrolysis-gas chromatography coupled to mass spectrometer (Py-GC/MS) showed an increase in the formation of methanol and methacrylic acid while a decrease in the formation of propanoic acid methyl ester occurred. In the case of PMMA-OMMT systems, a very significant reduction in the quantity of all these degradation products of PMMA was observed with increasing OMMT concentration. It is also noted that during PMMA-OMMT degradation less energy was released as the decomposition is an endothermic reaction and the material was cooled. 相似文献
2.
J. C. Machado G. Goulart Silva L. S. Soares 《Journal of Polymer Science.Polymer Physics》2000,38(8):1045-1052
Positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) measurements were performed in atactic poly(methylmethacrylate) and low molecular weight poly(ethylene oxide) (PEO) polymer blends, prepared by codissolution in acetonitrile, covering the full range of composition. Results from the two techniques indicate that a “window of miscibility” is attained at around 20–30 wt % of the semicrystalline PEO. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1045–1052, 2000 相似文献
3.
Tzong‐Ming Wu Sung‐Fu Hsu Yeng‐Fong Shih Chien‐Shiun Liao 《Journal of Polymer Science.Polymer Physics》2008,46(12):1207-1213
The thermal degradation behaviors of biodegradable poly(3‐hydroxybutyrate) (PHB) and PHB/poly(ethylene glycol) phosphonates (PEOPAs)‐modified layered double hydroxide (PMLDH) nanocomposites have been investigated using thermogravimetric analysis. Effects of PMLDH contents on the isothermal degradation kinetics of PHB were explored. These experimental results show that the degradation kinetics of PHB/PMLDH nanocomposites is the chain‐scission process of cyclic β‐elimination reaction with the following autocatalytic reactions, which is very similar to that of pure PHB matrix. Further calculated data based on the autocatalytic model can fit very well with the experimental data. The Ea value of PHB/PMLDH nanocomposites is increased as the content of PMLDH increases. This can be attributed to the incorporation of more PMLDH loading to PHB induced a decrease in the degradation rate and an increase in the residual weight for PHB/PMLDH nanocomposites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1207–1213, 2008 相似文献
4.
The miscibility, morphology, and thermal properties of poly(vinyl chloride) (PVC) blends with different concentrations of poly(methyl methacylate) (PMMA) have been studied. The interaction between the phases was studied by FTIR and by measuring the glass transition temperature (Tg) of the blends using differential scanning calorimetry. Distribution of the phases at different compositions was studied through scanning electron microscopy. The FTIR and SEM results show little interaction and gross phase separation. The thermogravimetric studies on these blends were carried out under inert atmosphere from ambient to 800 °C at different heating rates varying from 2.5 to 20 °C/min. The thermal decomposition temperatures of the first and second stage of degradation in PVC in the presence of PMMA were higher than the pure. The stabilization effect on PVC was found most significant with 10 wt% PMMA content in the PVC matrix. These results agree with the isothermal degradation studies using dehydrochlorination and UV-vis spectroscopic results carried out on these blends. Using multiple heating rate kinetics the activation energies of the degradation process in PVC and its blends have been reported. 相似文献
5.
Synthesis,characterization, and thermal stability of poly (lactic acid)/zinc oxide pillared organic saponite nanocomposites via ring‐opening polymerization of d,l‐lactide 下载免费PDF全文
Poly (lactic acid) (PLA) was synthesized using d , l ‐lactide monomer and zinc oxide (ZnO) pillared organic saponite as the green catalyst, through ring‐opening polymerization. The effects of stoichiometry of catalyst and polymerization conditions on molecular weight of PLA were evaluated by orthogonal experiment. The optimum polymerization parameters were: 0.5 wt% ZnO pillared organic saponite and reaction conditions of 170°C for 20 hr. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy confirmed the PLA structure. Gel permeation chromatography showed that the average molecular weight of PLA was 48,442 g/mol, and its polydispersity index was 1.875. Differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy showed that ZnO pillared organic saponite improved the crystallinity of PLA. Thermal gravimetric analysis showed improved thermal stability of PLA because of ZnO pillared organic saponite. Thermal decomposition kinetics of PLA/ZnO pillared organic saponite nanocomposites was also studied. The activation energies (Ea) for thermal degradation of PLA and PLA/ZnO pillared organic saponite nanocomposites were evaluated by the Kissinger and Ozawa methods, which demonstrated that ZnO pillared organic saponite enhanced Ea of thermal degradation of PLA and significantly improved its thermal stability. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Thermal degradation of ethanolamine treated poly(vinyl chloride)/wood flour composites 总被引:1,自引:0,他引:1
The influence of ethanolamine treatment of wood flour on the thermal degradation behaviour of PVC/wood flour composites was investigated. The decomposition of untreated and treated wood flour and PVC/wood flour composites was measured using thermogravimetric analysis (TGA). The TGA indicated an accelerated degradation of the composite after treatment in a temperature range between 240 and 350 °C. This was caused by a synergistic decomposition of treated wood flour and polymer. Additionally, the colour of the material was measured in order to analyse the effect of the treatment. The lightness of the composite was reduced with increasing ethanolamine concentration. 相似文献
7.
Poly(bisphenol A acryloxyethyl phosphate) (BPAAEP) was blended in different ratios with a commercial urethane acrylate to
obtain a series of UV curable flame-retardant resins. The thermal oxidative degradation mechanism of their cured films in
air were studied by thermogravimetric analysis at several heating rates between 5 and 20°C min−1. The activation energies were determined using Kissinger method, Friedman method, Flynn-Wall method, Horowitz-Metzger method
and Ozawa method. The results showed that the activation energies of the blends were lower than that of pure urethane acrylate
at lower degree of degradation, whereas the higher activation energies were obtained at higher degree of degradation. 相似文献
8.
A novel method was developed for fabricating poly(trimethylene terephthalate) (PTT)/BaSO4 nanocomposites using in situ polymerization. A nano‐BaSO4 suspension was prepared by reacting H2SO4 with Ba(OH)2 in 1,3‐propanediol (PDO). The mean size of original nano‐BaSO4 is 15–23 nm. PTT matrix was synthesized by condensation polymerization of bis(3‐hydroxypropyl terephthalate) after the completion of transesterification of dimethyl terephthalate (DMT) with PDO. It was found that the addition of BaSO4 had little influence on the synthesis of PTT. The properties of nanocomposites with a wide range of BaSO4 fraction were systematically studied. The morphologies of the composites were investigated by transmission electron microscopy (TEM), which showed that agglomerate structures did not form until BaSO4 content higher than 8 wt%. The thermal properties of the nanocomposites were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results revealed that the triple endothermic melting phenomenon is only observed for the nanocomposites which contained 4 wt% BaSO4, other samples exhibit double endothermic melting. These results indicated that nano‐BaSO4 could induce a microcrystal to form more perfect morphology and restrain the formation of much thicker lamellar crystallinity, that is, nano‐BaSO4 could induce the formation of more uniform crystallinity. Besides, the crystallization ability of the composites was greatly improved by loading nano‐BaSO4. The TGA results suggested that nano‐BaSO4 slightly increased the maximum‐decomposing‐rate temperature 1 (Tmax1), but markedly increased the maximum‐decomposing‐rate temperature 2 (Tmax2). Furthermore, the steady‐state shear behavior of samples was investigated by a parallel‐plate rheometer. The storage modulus (G') and loss modulus (G”) curves shifted to higher modulus upon addition of 2–16 wt% of nano‐BaSO4. All of the samples investigated exhibited the expected shear‐thinning behavior. Proper contents of nano‐BaSO4 would decrease the shear viscosity of nanocomposites, whereas superfluous amounts would greatly increase the viscosity of nanocomposites and the composites which loaded 8 wt% nano‐BaSO4 revealed an equivalent shear viscosity compared to pure PTT. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
Non-isothermal thermogravimetry was performed in a dynamic nitrogen atmosphere, on a series of poly(di-n-propyl itaconates) (PDnPI) and poly(di-iso-propyl itaconates) (PDiPI) which had been prepared in the presence of various amounts of the chain transfer agentn-dodecyl mercaptan (DDM).Differential thermogravimetry (DTG) showed that both polymers degraded in two stages. The DTG curve of PDnPI had a large first peak followed by a smaller shoulder, whereas the DTG curve of PDiPI was composed of two peaks of almost equal heights. The addition of DDM during the polymerisations in both cases resulted in a similar decrease in the relative area of the first peak. 相似文献
10.
Hojjat Toiserkani 《高分子科学》2016,34(3):288-297
In the present investigation, novel poly(amid-imide)/zinc oxide nanocomposites (PAI/ZnO NCs) containing benzoxazole and benzimidazole pendent groups with different amounts of modified zinc oxide nanoparticles (ZnO NPs) were successfully prepared via the ex situ method. Poly(amid-imide) (PAI) was prepared by direct polycondensation of 2-[3,5- bis(N-trimellitimidoyl)phenyl]benzoxazole (DCA) with 5-(2-benzimidazole)-1,3-phenylenediamine (DAMI) and provided the polymeric matrix with well-designed groups. The surface of ZnO NPs was functionalized with 3-aminopropyltriethoxysilane (APS) coupling agent to have a better dispersion and enhancing possible interactions of NPs with functional groups of polymer matrix. The amount of APS bonded to the ZnO surface was determined by thermogravimetric analysis. PAI/ZnO nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). SEM analysis showed that the modified ZnO nanoparticles were homogeneously dispersed in polymer matrix. In addition, TGA data indicated an enhancement of thermal stability of the nanocomposite compared with the neat polymer. 相似文献
11.
Kazem Jeddi Nader Taheri Qazvini Seyed Hassan Jafari Hossein Ali Khonakdar Javad Seyfi Uta Reuter 《Journal of Polymer Science.Polymer Physics》2011,49(4):318-326
Polymer–silicate nanocomposites based on poly (ethylene oxide), PEO, poly(methyl methacrylate), PMMA, and sodium montmorillonite clay were fabricated and characterized to investigate the effect of nanolayered silicates on segmental dynamics of PEO/PMMA blends. X‐ray results indicate the formation of an exfoliated morphology in the nanocomposites. At low silicate contents, an enhancement in segmental dynamics of blend nanocomposites and also PEO, minor component in blend, is observed at temperature region below blend glass transition. This result can be attributed to the improvement of the confinement effect of rigid PMMA matrix on the PEO chains by introducing a low amount of layered silicates. On the other hand, at high silicate contents, an enhancement in segmental dynamics of blend nanocomposites and PEO is observed at temperature region above blend glass transition. This behavior could be interpreted based on the reduction of monomeric friction between two polymer components, which can facilitate segmental motions of blend components in nanocomposite systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
12.
Cheng‐Fang Ou 《Journal of Polymer Science.Polymer Physics》2003,41(22):2902-2910
Poly(trimethylene terephthalate) (PTT)/montmorillonite (MMT) nanocomposites were prepared by the solution intercalation method. Two different kinds of clay were organomodified with an intercalation agent of cetyltrimetylammonium chloride (CMC). X‐ray diffraction (XRD) indicated that the layers of MMT were intercalated by CMC, and interlayer spacing was a function of the cationic exchange capacity of clay. The XRD studies demonstrated that the interlayer spacing of organoclay in the nanocomposites depends on the amount of organoclay. From the results of differential scanning calorimetric analysis, it was found that clay behaves as a nucleating agent and enhances the crystallization rate of PTT. The maximum enhancement of the crystallization rate for the nanocomposites was observed in nanocomposites containing about 1 wt % organoclay with a range of 1–15 wt %. From thermogravimetric analysis, we found that the thermal stability of the nanocomposites was enhanced by the addition of 1–10 wt % organoclay. According to transmission electron microscopy, the organoclay particle was highly dispersed in the PTT matrix without a large agglomeration of particles for a low organoclay content (5 wt %). However, an agglomerated structure did form in the PTT matrix at a 15 wt % organoclay content. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2902–2910, 2003 相似文献
13.
Branka Andričić Tonka Kovačić Sanja Perinović Adela Grgić 《Macromolecular Symposia》2008,263(1):96-101
Summary: Thermal properties of nanocomposites prepared of poly(L-lactide) (PLLA) and CaCO3 applying differential scanning (DSC) calorimetry and thermogravimetry (TG) were studied. Nanocomposites were prepared by extrusion process at 170 °C. DSC measurements show that CaCO3 has no influence on glass transition and melting point of PLLA but lowers its cold crystallization temperature. There is no difference in glass transition temperature of PLLA before and after extrusion. High temperature thermal stability of the PLLA in the composites is poorer than neat PLLA. Kinetic parameters also indicate greater reactivity of the system upon CaCO3 addition. 相似文献
14.
Xin Tong Haichao Zhao Tao Tang Zhiliu Feng Baotong Huang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(11):1706-1711
Transparent poly(ethyl acrylate) (PEA)/bentonite nanocomposites containing intercalated–exfoliated combinatory structures of clay were synthesized by in situ emulsion polymerizations in aqueous dispersions containing bentonite. The samples for characterization were prepared through direct‐forming films of the resulting emulsions without coagulation and separation. An examination with X‐ray diffraction and transmission electron microscopy showed that intercalated and exfoliated structures of clay coexisted in the PEA/bentonite nanocomposites. The measurements of mechanical properties showed that PEA properties were greatly improved, with the tensile strength and modulus increasing from 0.65 and 0.24 to 11.16 and 88.41 MPa, respectively. Dynamic mechanical analysis revealed a very marked improvement of the storage modulus above the glass‐transition temperature. In addition, because of the uniform dispersion of silicate layers in the PEA matrix, the barrier properties of the materials were dramatically improved. The permeability coefficient of water vapor decreased from 30.8 × 10?6 to 8.3 × 10?6 g cm/cm2 s cmHg. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1706–1711, 2002 相似文献
15.
In this work, nonisothermal melt crystallization and subsequent melting behavior of poly(hydroxybutyrate) (PHB) and its nanocomposites at different multiwalled carbon nanotubes (MWCNTs) loadings were investigated. Increasing the MWCNTs loadings has enhanced the nonisothermal melt crystallization of PHB significantly in the nanocomposites when compared with that of the neat PHB; furthermore, increasing the cooling rates shift the crystallization exotherms to low temperature range for both neat PHB and its nanocomposites. Double melting behavior is found for both neat PHB and its nanocomposites crystallized nonisothermally from the melt, which is explained by the melting, recrystallization, and remelting model. Effects of the MWCNTs loadings, cooling rates, and heating rates on the subsequent melting behavior of PHB were studied in detail. It is found that increasing the MWCNTs loadings, decreasing the cooling rates, and increasing the heating rates would restrict the occurrence of the recrystallization of PHB in the nanocomposites. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2238–2246, 2009 相似文献
16.
H. Kaczmarek J. Kowalonek Z. Klusek S. Pierzgalski S. Datta 《Journal of Polymer Science.Polymer Physics》2004,42(4):585-602
The photooxidative degradation of blends (in a full range of compositions) of amorphous poly(vinyl chloride) (PVC) with semicrystalline poly(ethylene oxide) (PEO) in the form of thin films is investigated using absorption spectroscopy (UV–visible and Fourier transform infrared) and atomic force microscopy (AFM). The amount of insoluble gel formed as a result of photocrosslinking is estimated gravimetrically. It is found that the PVC/PEO blendsí susceptibility to photooxidative degradation differs from that pure of the components and depends on the blend composition and morphology. Photoreactions such as degradation and oxidation are accelerated whereas dehydrochlorination is retarded in blends. The photocrosslinking efficiency in PVC/PEO blends is higher than in PVC; moreover, PEO is also involved in this process. AFM images showing the lamellar structure of semicrystalline PEO in the blend lead to the conclusion that the presence of PVC does not disturb the crystallization process of PEO. The changes induced by UV irradiation allow the observation of more of the distinct PEO crystallites. This is probably caused by recrystallization of short, more mobile chains in degraded PEO or by partial removal of the less stable amorphous phase from the film surface. These results confirm previous information on the miscibility of PVC with PEO. The mechanism of the interactions between the components and the blend photodegradation are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 585–602, 2004 相似文献
17.
Synthesis,thermal properties and crystalline morphology of poly(trimethylene terephthalate)/ZnO nanocomposites prepared by dual in situ polymerization 下载免费PDF全文
Poly(trimethylene terephthalate)/ZnO nanocomposites were successfully prepared by dual in situ polymerization. Firstly, ZnO nanoparticles were synthesized by a simple polyol method using 1,3‐propanediol (PDO) as solvent and stabilizer. Then, PTT/ZnO nanocomposites were prepared by in situ polymerization. The results of Fourier transform infrared spectra showed that PTT molecular chains were grafted to the surface of ZnO nanoparticles. The results of 1H NMR spectra confirmed that propyl ester molecules (as reaction product) were incorporated into PTT molecular chains. It was found that the intrinsic viscosity and molecular weight of synthesized PTT decreased with the addition of ZnO nanoparticles and the incorporation of propyl ester molecules. TEM results showed that ZnO nanoparticles with particle size of 20 ~ 30 nm were well dispersed and fully distributed in the polymer matrix. Besides, the melting temperatures and crystallization temperature decreased gradually and then increased slightly with the increasing loading of ZnO nanoparticles. Because of the strong interaction between ZnO nanoparticles and PTT matrix, the thermal stability of PTT/ZnO nanocomposites was improved. Interestingly, the results of Polarized Optical Microscopy showed that banded spherulites morphology can be observed in all PTT/ZnO nanocomposite samples. However, at higher loading of ZnO nanoparticles, band spacing became larger and was finally disturbed. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Pilar Aranda Yodalgis Mosqueda Eduardo Pérez-Cappe Eduardo Ruiz-Hitzky 《Journal of polymer science. Part A, Polymer chemistry》2003,41(24):3249-3263
Poly(ethylene oxide) (PEO)–clay (montmorillonite, hectorite, and laponite) nanocomposites were prepared by a melting intercalation procedure induced by microwave irradiation. The influence of parameters such as the time of irradiation, power, amount and relative ratio of the reagents, and relative humidity was investigated. X-ray diffraction, differential scanning calorimetry, elemental microanalysis, Fourier transform infrared, and scanning electron microscopy techniques were applied to characterize the resulting nanocomposites. Techniques involving impedance spectroscopy, thermoelectric power, and electrical polarization in the solid state were used to characterize the electrical properties of the nanocomposites. The electrical behavior of these PEO–silicate nanocomposites, including those containing an excess of alkaline metal salts in comparison with that of similar systems prepared by alternative procedures such as direct intercalation from polymer solutions or melting intercalation, was also examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3249–3263, 2003 相似文献
19.
Blandine Friederich Abdelghani Laachachi Michel Ferriol Marianne Cochez 《Polymer Degradation and Stability》2010,95(7):1183-24
Possible relationships between fire-retardant properties and thermal diffusivity for poly(methyl methacrylate) (PMMA) filled by melt blending with titanium dioxide (TiO2), alumina (Al2O3) and boehmite (AlOOH) were investigated for a better understanding of the mode of action of metal oxides as fire-retardants (FR) in PMMA. Fire-retardancy was measured with a cone calorimeter and thermal diffusivity (α) by Laser Flash Analysis (LFA). LFA measurements have shown that heat dispersion is higher with titanium dioxide and boehmite than with alumina despite a larger surface area. For thermal diffusivity, discrepancies between the different nanofillers were only visible from 10 wt% onwards. Thermal degradation of PMMA-oxide nanocomposites and their thermal diffusivity could be linked. Moreover, a bi-linear relationship between the peak of heat release rate (pHRR) and the average of heat release rate (AHRR) showed the occurrence of a barrier effect. 相似文献
20.
Polycarbonate (PC)/acrylonitrile‐butadiene‐styrene (ABS) polymer alloy/montmorillonite (MMT) nanocomposites were prepared using a direct melt intercalation technique. The pyrolytic degradation and the thermo‐oxidative degradation of the polymer alloy and the nanocomposites were studied by thermogravimetric analysis (TGA). The kinetic evaluations were performed by the model‐free kinetic analysis and the multivariate non‐linear regression. Apparent kinetic parameters for the overall degradation were calculated. The results show that PC/ABS/MMT nanocomposites have high thermal stability and low flammability. Their pyrolytic degradation and the thermo‐oxidative degradation model are different. The pyrolytic degradation reaction of the polymer is a two‐step parallel reaction model: nth‐order reaction model, and ath‐degree autocatalytic reaction with an nth‐order reaction autocatalytic reaction, whereas the thermal oxidative degradation reaction of the polymer is a two‐step following reaction model: A → B → C of nth‐order reaction model, and autocatalytic reaction model. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献