首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linkage between precipitation and recharge is still poorly understood in the Central America region. This study focuses on stable isotopic composition in precipitation and groundwater in the northern mountainous region of the Central Valley of Costa Rica. During the dry season, rainfall samples corresponded to enriched events with high deuterium excess. By mid-May, the Intertropical Convergence Zone poses over Costa Rica resulting in a depletion of 18O/16O and 2H/H ratios. A parsimonious four-variable regression model (r2?=?0.52) was able to predict daily δ18O in precipitation. Air mass back trajectories indicated a combination of Caribbean Sea and Pacific Ocean sources, which is clearly depicted in groundwater isoscape. Aquifers relying on Pacific-originated recharge exhibited a more depleted pattern, whereas recharge areas relying on Caribbean parental moisture showed an enrichment trend. These results can be used to enhance modelling efforts in Central America where scarcity of long-term data limits water resources management plans.  相似文献   

2.
This study presents a stable isotope hydrology and geochemical analysis in the inland Pacific Northwest (PNW) of the USA. Isotope ratios were used to estimate mean transit times (MTTs) in natural and human-altered watersheds using the FLOWPC program. Isotope ratios in precipitation resulted in a regional meteoric water line of δ2H?=?7.42·δ18O?+?0.88 (n?=?316; r2?=?0.97). Isotope compositions exhibited a strong temperature-dependent seasonality. Despite this seasonal variation, the stream δ18O variation was small. A significant regression (τ?=?0.11D?1.09; r2?=?0.83) between baseflow MTTs and the damping ratio was found. Baseflow MTTs ranged from 0.4 to 0.6 years (human-altered), 0.7 to 1.7 years (mining-altered), and 0.7 to 3.2 years (forested). Greater MTTs were represented by more homogenous aqueous chemistry whereas smaller MTTs resulted in more dynamic compositions. The isotope and geochemical data presented provide a baseline for future hydrological modelling in the inland PNW.  相似文献   

3.
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.  相似文献   

4.
A hydrogeochemical and stable isotope study (2H and 18O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells. Groundwater chemistry is controlled by dissolution of carbonate minerals, silicate weathering and ion exchange. Stable isotopic composition suggests that deep groundwater is recharged by high-intensity/large rainfall events, whereas the shallow wells can even be recharged by less-intense/small rainfall events. Water in deep wells reflect a mixture of water influenced by evaporation during or before infiltration and water that infiltrated through fast preferential pathways, whereas shallow wells are strongly influenced by evaporation. The findings of this research contribute to improve the understanding of hydrogeochemistry, recharge paths and temporal variations of perched aquifers.  相似文献   

5.
Groundwater depletion and changes in isotopic and chemical contents constitute the main indicators of overexploitation, recharge, and flow paths in the Souss–Massa aquifer. These indicators highlight processes concerning sustainability of water resources in the aquifer (e.g. surface/groundwater interaction, recharge processes, and marine intrusion). The spatial variation of stable and radioactive isotopic contents indicates a mixing of modern and old water within the system. Recent recharge was observed mainly along the Souss River (the major surface-water drainage in the study area) and in the irrigated areas. Mapping of chemical and isotopic variation shows that the area is affected by abstraction, irrigation water return, and the evolution of modern recharge in time and space. The processes, distribution, and timing of groundwater flow are influenced by short- and long-term effects; long-term recharge is dependent on climatic conditions. This study can be used to make informed decisions about water-resource allocation and alternative management practices.  相似文献   

6.
Environmental isotopes and hydrogeological data have been used for the construction of a conceptual model of fresh groundwater flow in the K?odzko Basin, Sudetes, Poland. The model has allowed the verification of a groundwater circulation scheme resulting from the general morphological assumptions and the recharge role to the surrounding mountains. Combined interpretation of the tritium ages and the isotopic altitude effect allowed determining the volume of water-bearing rock Vr and hydrogeological parameters of systems drained by springs and wells. Prior to the final determination of the recharge zone of individual objects, calculations were made for the thickness of the flow zone (h) and the distance from the recharge zone to the drainage point (L). The recharge areas for springs are located within a distance of 1–1.5 km and are characterized by a width of 0.75–1.65 km. The recharge area of wells is located in significantly longer distances of 2.1–12 km but yet definitely lower width. The recharge of groundwater from the Western direction seems to be obvious for all the wells and springs located westward from Nysa K?odzka River. The eastern component of the recharge appeared during the interpretation of the well in D?ugopole.

Dedicated to Professor Peter Fritz on the occasion of his 80th birthday  相似文献   

7.
Stable isotopes of water, organic micropollutants and hydrochemistry data are powerful tools for identifying different water types in areas where knowledge of the spatial distribution of different groundwater is critical for water resource management. An important question is how the assessments change if only one or a subset of these tracers is used. In this study, we estimate spatial artificial infiltration along an infiltration system with stage–discharge relationships and classify different water types based on the mentioned hydrochemistry data for a drinking water production area in Switzerland. Managed aquifer recharge via surface water that feeds into the aquifer creates a hydraulic barrier between contaminated groundwater and drinking water wells. We systematically compare the information from the aforementioned tracers and illustrate differences in distribution and mixing ratios. Despite uncertainties in the mixing ratios, we found that the overall spatial distribution of artificial infiltration is very similar for all the tracers. The highest infiltration occurred in the eastern part of the infiltration system, whereas infiltration in the western part was the lowest. More balanced infiltration within the infiltration system could cause the elevated groundwater mound to be distributed more evenly, preventing the natural inflow of contaminated groundwater.

Dedicated to Professor Peter Fritz on the occasion of his 80th birthday  相似文献   


8.
An isotopic monitoring was undertaken in 2012–2014 at Lake ?abińskie (Mazurian Lakeland, NE Poland). The aim was to identify the factors and processes controlling an isotopic composition of the lake water and to explore the mechanism responsible for recording the climatic signal in stable isotope composition of deposited carbonates. δ18O and δ2H in the precipitation, lake water column, inflows and outflow, δ18O and δ13C in the carbonate fraction of sediments trapped in the water column were recorded with monthly resolution. A relationship between δ18O and δ2H in local precipitation was used to estimate the local meteoric water line. The dataset obtained for the water enabled to identify the modification of the water’s isotopic composition due to evaporation, connected with seasonal lake water stratification and mixing patterns. Statistically significant correlation coefficients suggest that the δ18O of the carbonate fraction in the sediment traps depends on the δ18O of rainfall water and on air temperature. The fractionation coefficient α shows that in summer months the carbonate precipitation process is closest to equilibrium. As expected for an exorheic lake, no significant correlation was observed between δ18O and δ13C in precipitated carbonate.  相似文献   

9.
The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3H values were around 8 TU in 2015, short-term 3H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006–2015 supplement adding to the Danube isotope set published earlier.  相似文献   

10.
Stable isotopes of hydrogen and oxygen are often used for water balance calculations of lakes. We present an approach combining the lake water balance with an isotope mass balance to constrain the sources and sinks of the water of a small dimictic lake subjected to eutrophication. Meteorological and hydraulic data in combination with measured isotope signatures of the different water compartments enabled to assess the degree of surface water/groundwater interaction and the amount of overland flow into the lake. Groundwater could be excluded as a lake water source, as its water level was always below the lake water level. In the absence of a channelled inflow, precipitation and overland flow were the remaining options, whereby the latter was only active during periods of exceptionally high rainfall. While the groundwater signatures adjacent to the lake showed an influence of lake water, the lake water balance itself indicated that the associated volumetric water loss to groundwater is rather negligible. In the present case, only a combined assessment of hydrological and isotopic data allowed for an accurate characterization of the studied lake and a quantification of its water sources and sinks, highlighting the importance of using more than one methodological approach for such a purpose.  相似文献   

11.
Stable isotopes and electrical conductivity in groundwater were used as natural tracers to adjust the hydrogeological conceptual model in one of the largest catchments within the inter-mountainous Pampa plain, Argentina. Geostatistical tools were used to define the model that best fitted the spatial distribution of each tracer, and information was obtained in areas where there was a lack of data. The conventional isotopic analysis allowed the identification of three groundwater groups with different isotopic fingerprints. One group containing 56?% of the total groundwater samples suggested a well-mixed system and soil infiltration precipitation as the main recharge source to the aquifer. The other two groups included samples with depleted (25.5?%) and enriched (18.5?%) isotopic compositions, respectively. The combination of δ18O, δ2H and electrical conductivities maps suggested ascending regional flows and water transfer from the Quequén Grande River catchment to the Moro creek. The spatial interpretation of these tracers modified the conceptual hydrogeological model of the Quequén Grande River.  相似文献   

12.
The stable isotopic compositions of all major daily rain fall samples (n?=?113) collected from Kozhikode station in Kerala, India, for the year 2010 representing the pre-monsoon, southwest and northeast monsoon seasons are examined. The isotopic variations δ18O, δ2H and d-excess in daily rainfall ranged from δ18O: ?4.4 to 2?‰, δ2H: ?25.3 to 13.8?‰, and d-excess: ?2.4 to 15.3?‰; δ18O: ?9.7 to ?0.6?‰, δ2H: ?61.7 to 5.3?‰, and d-excess 5.8 to 17.4?‰; δ18O ?11.3 to ?1.4?‰, δ2H: ?75.3 to 0.9?‰, and d-excess: 8.8 to 21.3?‰ during the pre-, southwest and northeast monsoon periods, respectively. Thus, daily rainfall events during two monsoon periods had a distinct range of isotopic variations. The daily rain events within the two monsoon seasons also exhibited periodic variations. The isotopic composition of rain events during pre-monsoon and a few low-intensity events during the southwest monsoon period had imprints of secondary evaporation. This study analysing the stable isotopic characteristics of individual rain events in southern India, which is influenced by dual monsoon rainfall, will aid in a better understanding of its mechanism.  相似文献   

13.
We produced continuous records of sea surface salinity and isotopic composition from 1998 to 2004 at Ishigaki Island, southwest Japan, and found clear seasonal variations in salinity and oxygen isotopic composition and increasing trends of them after 1999. These increasing trends could be principally due to the decreasing difference between local precipitation (P) and evaporation (E), as a result of the reduction of horizontal vapour transport from adjacent oceans. When samples collected in heavy rainfall events were excluded, the average Δδ18O/Δ salinity slope was obtained as 0.31, 0.35 in summer and 0.28 in winter. Estimated E/P ratios based on the isotopic box model are in good agreement with the ratios of independently estimated E to observed P.  相似文献   

14.
Editor change     
Beaver Lake and Radok Lake, the largest known epishelf lake and the deepest freshwater lake on the Antarctic continent, respectively, were isotopically (δ2H, δ18O) and hydrogeochemically studied. Radok Lake is an isothermal and non-stratified, i.e. homogeneous water body, while Beaver Lake is stratified with respect to temperature, salinity, and isotopic composition. The results for the latter attest to freshwater (derived from snow and glacier melt) overlying seawater.  相似文献   

15.
ABSTRACT

Karst springs in the Main Range of the Crimean Mountains and the Crimean Piedmont show a restricted range of values (δ18O?=?–10.5 to –8.0 ‰, δ2H?=?–72 to –58 ‰), somewhat more negative than the weighted mean of meteoric precipitation. This suggests preferential recharge at higher elevations during winter months. Groundwater tapped by boreholes splits in three groups. A first group has isotopic properties similar to those of the springs. The second group shows significantly lower values (δ18O?=?–13.3 to –12.0 ‰, δ2H?=?–95 to –82 ‰), suggesting recharge during colder Pleistocene times. The third group has high isotope values (δ18O?=?–2.5 to +1.0 ‰, δ2H?=?–24 to –22 ‰); the data points are shifted to the right of the Local Meteoric Water Line, suggesting water–rock exchange processes in the aquifer. These boreholes are located in the Crimean Plains and discharge mineralized (ca. 25 g L?1) thermal (65°C) water from a depth of 1600–1800 m. Groundwater associated with mud volcanoes on the Kerch peninsula have distinct isotope characteristics (δ18O?=?–1.6 to +9.4 ‰, δ2H?=?–30 to –18 ‰). Restricted δ2H variability along with variable and high δ18O values suggest water–rock interactions at temperatures exceeding 95 °C.  相似文献   

16.
Snow- and glacier-dominated catchments in the Himalayas are important sources of fresh water to more than one billion people. However, the contribution of snowmelt and glacier melt to stream flow remains largely unquantified in most parts of the Himalayas. We used environmental isotopes and geochemical tracers to determine the source water and flow paths of stream flow draining the snow- and glacier-dominated mountainous catchment of the western Himalaya. The study suggested that the stream flow in the spring season is dominated by the snowmelt released from low altitudes and becomes isotopically depleted as the melt season progressed. The tracer-based mixing models suggested that snowmelt contributed a significant proportion (5–66?%) to stream flow throughout the year with the maximum contribution in spring and summer seasons (from March to July). In 2013 a large and persistent snowpack contributed significantly (~51?%) to stream flow in autumn (September and October) as well. The average annual contribution of glacier melt to stream flow is little (5?%). However, the monthly contribution of glacier melt to stream flow reaches up to 19?% in September during years of less persistent snow pack.  相似文献   

17.
Soil samples containing water with known stable isotopic compositions were prepared. The soil water was recovered by using vacuum/heat distillation. The experiments were held under different conditions to control rates of water evaporation and water recovery. Recoveries, δ18O and δ2H values of the soil water were determined. Analyses of the data using a Rayleigh distillation model indicate that under the experimental conditions only loosely bound water is extractable in cases where the recovery is smaller than 100?%. Due to isotopic exchange between vapour and remaining water in the micro channels or capillaries of the soil matrix, isotopic fractionation may take place under near-equilibrium conditions. This causes the observed relationship between δ2H and δ18O of the extracted water samples to have a slope close to 8. The results of this study may indicate that, in arid zones when soil that initially contains water dries out, the slope of the relationship between δ2H and δ18O values should be close to 8. Thus, a smaller slope, as observed by some groundwater and soil water samples in arid zones, may be caused by evaporation of water before the water has entered the unsaturated zone.  相似文献   

18.
Ratios of stable isotopes of hydrogen and oxygen (2H/1H and 18O/16O) in river waters were measured to investigate the hydrological pathway of the Xijiang River, Southwest China. The δ2H and δ18O values of river waters exhibit significant spatial and temporal variations and the isotopic compositions vary with elevation, temperature and precipitation of the recharge area. Spatially, δ18O values of river waters from high mountain areas are lower than those from the lower reaches of the Xijiang River due to lower temperature and higher elevation for the recharge area. However, both 2H and 18O are enriched differently in river waters from the middle reaches during the high flow season, depending on the season and degree of anthropogenic disturbances (e.g. water impoundments). In contrast, deuterium excess (d-excess) values of waters from the middle reaches are substantially lower than those from the upper and lower reaches, suggesting that river waters may be resided in the reservoir and evaporation increases in the middle reaches of the Xijiang River.  相似文献   

19.
Cryogenic vacuum extraction is the well-established method of extracting water from soil for isotopic analyses of waters moving through the soil–plant–atmosphere continuum. We investigate if soils can alter the isotopic composition of water through isotope memory effects, and determined which mechanisms are responsible for it. Soils with differing physicochemical properties were re-wetted with reference water and subsequently extracted by cryogenic water distillation. Results suggest some reference waters bind tightly to the soil and not all of this tightly bound water is removed during cryogenic vacuum extraction. Kinetic isotopic fractionation occurring when reference water binds to the soil is likely responsible for the 18O-depletion of re-extracted reference water, suggesting an enrichment of the tightly bound soil water pool. Further re-wetting of cryogenically extracted soils indicates an isotopic memory effect of tightly bound soil water on water added to the soil. The data suggest tightly bound soil water can influence the isotopic composition of mobile soil water. Findings show that soils influence the isotope composition of soil water by (i) kinetic fractionation when water is bound to the soil and (ii) equilibrium fractionation between different soil water pools. These findings could be relevant for plant water uptake investigations and complicate ecohydrological and paleohydrological studies.  相似文献   

20.
The 18O/16O and 2H/1H ratios of 18 water brands representing the most popular bottled water brands in the Saudi market were measured using a system based on the latest advancements in tunable off-axis integrated cavity output diode laser spectroscopy (OA-ICOS) in the near-infrared spectral region. Utilizing δ18O and the δ2H values of locally produced water samples, a meteoric water line (δ2H?=?7.84 δ18O?+?2.11) was extracted and found to be consistent with the slope of the global meteoric water line (GMWL) and the geographic location of Saudi Arabia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号