首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel carboxymethyl chitosan‐polylactide (CMCS‐g‐PLA) hydrogels were prepared by using 1‐(3‐dimethylaminopropyl)‐3‐ethylcarbodiimide hydrochloride/N‐hydroxysuccinimide (EDC/NHS) as crosslinking agent and catalyst at room temperature. Solid‐state 13C‐NMR, SEM, and FT‐IR measurements showed that PLA blocks are successfully grafted onto the CMCS main chains. DSC measurements confirmed the effective crosslinking of carboxymethyl chitosan. With increasing the amount of EDC/NHS, the crosslink destiny of CMCS‐g‐PLA copolymers is improved. The swelling ratio of CMCS‐g‐PLA hydrogels is pH dependent, showing a minimum in the pH range of 3 to 5. Rheological studies confirmed the formation of hydrogels. The higher the crosslinking density, the higher the storage modulus of hydrogels. CMCS‐g‐PLA hydrogels only slightly degrade in PBS for 10 days. In the presence of lysozyme, however, hydrogels with low crosslink density are totally degraded in 10 days. Drug release studies show that after 96 h, 95% of thymopentin is released under in vitro conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Chitosan with excellent biodegradable and biocompatible characteristics has received attention as an oral drug delivery vehicle. A quaternized chitosan (i.e., N-diethylmethyl chitosan, DEMC) was prepared based on a modified two-step process via a 22 factorial design to optimize the preparative conditions. DEMC was fully characterized using FTIR and 1H-NMR spectroscopies. As calculated using NMR-based data, high degree of quaternization was achieved through the optimized two-step process. The highly quaternized biopolymeric derivative was subjected to microbial experiments. The antimicrobial activities of chitosan and DEMC against Escherchia coli were compared by calculation of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Our data indicates that although the antimicrobial activity of DEMC is higher than that of chitosan in acetic acid medium, the both compounds are pH dependent and an increase in concentration of acetic acid results in a significant decrease in both MIC and MBC.  相似文献   

3.
Thiazolidinone derivatives (TDCs) were prepared by converting chitosan into chitosan's Schiff's bases (CSBs), followed by treatment with mercaptoacetic acid. Both CSBs and TDCs were tested for antimicrobial activity against four different bacteria. All TDCs showed comparatively better anti-microbial activity without much affecting basic physical properties of chitosan such as film-forming capacity, tensile strength, etc. This indicates that chitosan derivatives with a thiazolidinone moiety might be a better material for wound dressing.  相似文献   

4.
Microbial lipase from Candida rugosa immobilized into porous chitosan beads was tested for esterification selectivity with butanol and different organic acids (C2–C12), and butyric acid and different aliphatic alcohols (C2–C10). After 24 h, the acids tested achieved conversions of about 40–45%. Acetic acid was the only exception, and in this case butanol was not consumed. Different alcohols led to butyric acid conversions >40%, except for ethanol, in which case butyric acid was converted only 26%. The system’s butanol and butyric acid were selected for a detailed study by employing an experimental design. The influence of temperature, initial catalyst concentration, and acid:alcohol molar ratio on the formation of butyl butyrate was simultaneously investigated, employing a 23 full factorial design. The range studied was 37–50°C for temperature (X1), 1.25–2.5% (w/v) for the catalyst concentration (X2), and 1 and 2 for the acid:alcohol molar ratio (X3). Catalyst concentration (X2) was found to be the most significant factor and its influence was positive. Maximum ester yield (83%) could be obtained when working at the lowest level for temperature (37°C), highest level for lipase concentration (2.5% [w/v]), and center level of acid:alcohol molar ratio (1.5). The immobilized lipase was also used repeatedly in batch esterification reactions of butanol with butyric acid, revealing a half-life of 86 h.  相似文献   

5.
《Mendeleev Communications》2022,32(6):774-776
Ultrasound-mediated reaction of chitosan with ciprofloxacin in the presence of N,N'-dicyclohexylcarbodiimide in water gives the chitosan–ciprofloxacin conjugates of carboxamide type. The conjugates show a mediate antibacterial effect and reduced cytotoxicity.  相似文献   

6.
The purpose of this study was to synthesize series of methylated chitosaccharide derivatives, possessing various degree of methylation, and to determine their structure activity relationship (SAR) with regard to their antibacterial effect against Staphylococcus aureus. Chitosan polymer and chitooligomers were used as starting materials and were methylated by reaction with methyl iodide. Depending on the reaction conditions the degree of N-quaternization ranged from 0% to 74%, with varying degree of N,N-dimethylation, N-monomethylation and O-methylation. More selective N-quaternization could be obtained with protection group strategy. At pH 5.5 the chitosaccharide polymers and their methylated derivatives were active against S. aureus with minimal inhibitory concentration (MIC) ranging from 16 to 512 μg/mL. At pH 7.2 the non-quaternized derivatives were inactive but their highly N-quaternized derivatives showed MIC as low as 8 μg/mL. The chitooligomers, as well as their derivatives, were inactive at both pH’s. The SAR studies revealed that N-quaternization was mainly responsible for the antibacterial effects at pH 7.2, whereas it did not contribute to the antibacterial activity under acidic conditions.  相似文献   

7.
Novel chitosan based polyelectrolyte complexes (PEC) were developed and optimized in order to obtain films possessing the optimal functional properties (flexibility, resistance, water vapour transmission rate and bioadhesion) to be applied on skin. The development was based on the combination of chitosan and two polyacrylic acid (PAA) polymers with different crosslinkers and crosslinking densities. The interaction between the polymers was maximized controlling the pH, and by forming the films at a pH value close to the pKa of the respective components as identified by potentiometric and turbidimetric titrations. The action of glycerol, PEG200, Hydrovance and trehalose upon the functional properties of the films was also evaluated. Glycerol was found to improve the film properties in terms of flexibility, resistance and water vapour transmission rate (WVTR) with a maximum effect at 30%. The application of a pressure sensitive adhesive (PSA) significantly improved bioadhesion with a negligible influence in the resistance and flexibility of the films.The optimized film, including adhesive, has shown very good properties for application in the skin and represents a very promising formulation for further incorporation of drugs for topical and transdermal administration.  相似文献   

8.
Turmeric spent, a by-product of turmeric processing industries, was used as a source to prepare nanofibers (NF). The chemical treatments methods followed by acid hydrolysis accompanied with high pressure homogenization were used to prepare NF. The resulting turmeric nanofibers (TNF) were characterized by Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA/DTA). The TNF presented needle like structure, high thermal stability, an average width of 38.5?nm, average length of 245.7?nm, and giving an aspect ratio (L/D) of 23.15. The prepared TNF showed pronounced antimicrobial activity against Bacillus cereus, Escherichia Coli, Salmonella typhimurium and Staphylococcus aureus and also registered good antioxidant activity. The results showed that TNF were successfully obtained from turmeric spent and might be potentially applied in different fields, such as pharmaceutical, biological active species, nutraceuticals, components for food industries and bionanocomposites.  相似文献   

9.
Chitosan (CS) has received much attention as a functional biopolymer especially in pharmaceutical applications, but has serious limitations owing to its poor hemo-compatibility property. Present paper focuses on the chemical modification of CS in order to enhance hemocompatibility. Amphiphilic derivative (lauroyl sulfated chitosan, LSCS) was prepared by the inclusion of sulfo group (hydrophilic) and lauroyl group (hydrophobic) to CS backbone and particles were prepared by an ionic-gellation approach. Modification was confirmed by FTIR, NMR and zeta potential measurements and the microparticles were evaluated for its particle size, swelling properties and thermal behaviour. Blood compatibility studies like hemolysis, RBC, WBC, platelet aggregation studies, blood clotting time, protein adsorption and C3 protein depletion assay were carried out for these polymers using standard techniques and cytotoxicity studies were performed to understand its applicability. Negatively charged (-6.06 mV) LSCS submicroparticles (886 nm) were prepared in this study. Blood compatibility studies demonstrated that the amphiphilic modification improved the hemocompatibility of CS. RBC aggregation and hemolysis induced by CS were significantly reduced by this modification. Further amphiphilic modification was effective in reducing the protein adsorption on CS. LSCS derivatives were found to be non-toxic in L929 cell lines. From these studies, it appears that LSCS is a hemocompatible version of CS.  相似文献   

10.
Palladium chloride doped chitosan composite nanofibers were prepared by electrospinning with sodium polyacrylate (PAAS) as the co-spinning agent. The composite nanofibers are subsequently treated at elevated temperature to improve their solvent resistance. The Pd (II) cations inside the composite nanofibers were reduced into uniform palladium nanoparticles (Pd NPs) with mean diameter of ~4.93 nm. These Pd NPs inside the chitosan composite nanofibers exhibited excellent catalytic activity for Heck reactions of aromatic iodides with alkenes with yields over 85%. Moreover, due to the fibrous structure, this novel fibrous palladium catalyst could be readily recovered by simple filtration and reused for 18 times without loss of initial catalytic activity. It was found that the reactants could readily diffuse from the reaction solution to the active Pd NPs inside the nanofibers and the products could departure from composite fibers into the reaction solution, while the Pd NPs were tightly restricted inside the chitosan composite nanofibers.  相似文献   

11.
Bionanocomposites with different loadings of silver (Ag) were prepared via synthesis of Ag nanoparticles (AgNPs) using the wet chemical reduction method in the lamellar space layer of the organo-sepiolite/chitosan (O-SEP/CS). The prepared O-SEP/CS/Ag bionanocomposites were characterized using various analysis methods for their structure, morphology, and optical properties. The characteristic absorption bands from the UV–visible absorption spectrum confirmed the formation of AgNPs. The antibacterial activities of O-SEP/CS/Ag bionanocomposites were investigated against gram-positive and gram-negative bacteria using the disc diffusion method. The results suggest that O-SEP/CS/Ag bionanocomposites can be useful in wide range of bio-medical applications because of high antibacterial activity.  相似文献   

12.
以壳聚糖与环氧乙烷为原料制备亲水性0-羟乙基壳聚糖,进一步再与N-丁二酰羟亚胺基棕榈酸酯在避光下反应,获得了两亲性高分子量壳聚糖,并通过红外光谱、核磁共振氢谱确定了目标化合物的结构。探讨了两亲性壳聚糖亲油基的结构及其与亲水基比例对壳聚糖分子量及两亲性能的关系。  相似文献   

13.
Chitosan (CS) and its derivatives are receiving considerable attention for their great biocompatibility and broad-spectrum activities in many fields. In this work, we aimed to characterize the antimicrobial activity of novel chitosan Schiff bases (CSSB). CS was synthesized by double deacetylation of chitin (Cn) after its extraction from the armors of crustaceans Astacus leptodactylus, and CSSB-1 and CSSB-2 were synthesized by interaction of CS with 4-(2-chloroethyl) benzaldehyde (aldehyde-1) and 4-(bromoethyl) benzaldehyde (aldehyde-2), respectively, at room temperature. The synthesized compounds were characterized by elemental analysis, gel permeation chromatography (GPC), infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). The antimicrobial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria and against yeasts (Candida albicans) was significantly increased due to their higher solubility as compared to unmodified CS opening perspectives for the use of these compounds for antimicrobial prevention in different fields as, for example, food industry, cosmetics, or restoration.  相似文献   

14.
Chitosan powders and fibrids were prepared by shear precipitation of dissolved chitosan in a coagulating solution of sodium hydroxide. Following neutralization by washing and an alcohol dehydration step, the white to off-white powders were fine and free flowing. The dried fibrids had a highly oriented, ribbon-like shape that in bulk gave a lofty appearance and soft hand. Chitosan fibrids were readily converted to sheet structures by typical paper-making procedures. The resulting chitosan papers were either smooth, flexible, and largely translucent when pressed dry from the moist mat, or were soft and opaque white when the moist mat was soaked in alcohol before drying. X-ray diffraction, SEM, and optical microscopy were used to characterize the different chitosan powders, fibrids, and papers. Chitosan fibrid papers were found to have tensile properties comparable to that of cellulosic papers, though the wet strength and water sorption of chitosan fibrid papers was higher than that of the cellulose controls. ©1995 John Wiley & Sons, Inc.  相似文献   

15.
A facile spinning‐based strategy was developed to fabricate chitosan (CS) surface nanofiber‐based affinity membranes for protein adsorption. The core–shell nanofiber mat of nylon 6–CS was prepared via coaxial solution blowing process. The nanofibers have a diameter range of 60–300 nm. The core–shell structure was confirmed by transmission electron microscopy, and CS was observed as a thin layer that uniformly adhered to the core. The dye ligand of cibacron blue F3GA (CB F3GA) was further covalently immobilized on the nanofibers with a content of 425 µmol/g. The pristine and CB F3GA‐attached mats were studied in protein adsorption. High bovine serum albumin adsorption capacities of 91.9 and 219.6 mg/g were obtained for pristine and CB F3GA‐attached mats, respectively. Given its properties of high flux rate and low pressure drop, CB F3GA‐attached nylon 6–CS nanofiber mat meets the requirements of highly effective affinity membrane chromatography. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
对水溶性壳聚糖和对苯二甲醛在水/油界面发生的交联反应进行了研究,考察了水相溶液的pH值和油相中对苯二甲醛的浓度对该界面交联反应的影响.采用微流控技术制备得到了单分散的壳聚糖微囊:首先通过毛细管同轴聚焦流微流控装置制备得到单分散的O/W/O乳液.乳液制备中,以Pluronic F-127作为水相乳化剂,羟乙基纤维素作为水相增稠剂,水溶性壳聚糖溶于中间水相;交联剂对苯二甲醛溶于内部油相;含乳化剂PGPR 90的大豆油作为外部油相.乳液制备完成后,以乳液为模板,对苯二甲醛通过油/水界面扩散进入水层,与壳聚糖的氨基发生交联反应,生成壳聚糖聚合物凝胶网络,从而构成微囊的囊壁.通过光学显微镜分析和扫描电镜观察发现:微囊具备良好的单分散性和球形度以及尺寸均一的内部空腔,微囊的囊壁致密无孔.所得单分散微囊在药物传递等领域具备潜在的应用价值.  相似文献   

17.
The effect of melt mixing conditions on the morphological, rheological, electrical, electromagnetic interference (EMI) shielding effectiveness (SE), and tensile properties of 7.5 vol% vapor grown carbon nanofiber (VGCNF)/polyethylene composites were investigated. 7.5 vol% VGCNF was used because such loading is required to obtain a composite with satisfactory EMI SE. The composites were compounded by melt mixing and the parts were prepared by hot‐compression molding. The dispersion and distribution of nanofibers were enhanced by increasing the mixing energy, i.e. mixing time and/or rotation speed. The influence of mixing energy on the electrical and EMI SE properties was found to be a function of rotation speed, i.e. shear stress. For composites compounded at 20 rpm, increasing the mixing energy from 70 to 2300 J/ml decreased the EMI SE from 29.5 to 23.9 dB. However, for composites prepared at 100 rpm, increasing the mixing energy from 600 to 1700 J/ml decreased the EMI SE from 25.4 to 18.6 dB. No considerable influence on the yield stress, Young's modulus, and strain at break were found for different processing conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Uniform chitosan microspheres have been fabricated and weakly crosslinked for potential applications in colon-specific drug delivery. The effects of microsphere size, crosslinking density and electrostatic interactions between the drug and chitosan on drug release were studied, employing model drugs of different acidities. When the drug was basic, all chitosan spheres exhibited 100% release within 30 min. As the acidity of the drug increased, the release slowed down and depended on the crosslinking density and microsphere size. The release of weakly acidic drug was most suppressed for large spheres (35-38 microm), while the small spheres (23-25 microm) with higher crosslinking exhibited the most retention of highly acidic drug, indicating that they are a promising candidate for colon-specific delivery.  相似文献   

19.
Cholesterol-modified glycol chitosan (CHGC) conjugate was synthesized and characterized by FTIR and 1H NMR. The degree of substitution (DS) was 6.7 cholesterol groups per 100 sugar residues of glycol chitosan. CHGC formed self-aggregated nanoparticles with a roughly spherical shape and a mean diameter of 228 nm by probe sonication in aqueous medium. The physicochemical properties of the self-aggregated nanoparticles were studied using dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. The critical aggregation concentration (CAC) of self-aggregated nanoparticles in aqueous solution was 0.1223 mg/mL. Indomethacin (IND), as a model drug, was physically entrapped into the CHGC nanoparticles by dialysis method. The characteristics of IND-loaded CHGC (IND-CHGC) nanoparticles was analyzed using DLS, TEM and high performance liquid chromatography (HPLC). The IND-CHGC nanoparticles were almost spherical in shape and their size increased from 275 to 384 nm with the IND-loading content increasing from 7.14% to 16.2%. The in vitro release behavior of IND from CHGC nanoparticles was studied by a dialysis method in phosphate buffered saline (PBS, pH 7.4). IND was released in a biphasic way. The initial rapid release in 2 h and slower release for up to 12 h were observed. The results indicated that CHGC nanoparticles had a potential as a drug delivery carrier.  相似文献   

20.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号