共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
为研究影响碳基吸附剂吸附超临界温度气体的主要因素,选择石墨化热解碳黑BP280和Ajax活性炭,分析超临界温度高压甲烷在其上的吸附平衡。应用容积法,在压力0~20.5 MPa、温度253 K~313 K测定甲烷的吸附平衡数据,并由等量吸附线标绘和亨利定律常数确定等量吸附热。引入通用吸附等温方程,再由方程的Langmuir标绘确定最大吸附容量,进而通过方程的线性化计算吸附平衡态中甲烷分子的作用能。结果表明,甲烷在两种吸附剂上的最大吸附容量均随温度而变化,并都小于液态甲烷的密度;甲烷在碳黑和活性炭上的等量吸附热分别为11.9 kJ/mol~12.5 kJ/mol和17.5 kJ/mol~22.5 kJ/mol,体现了两种吸附剂不同的表面能量分布;甲烷分子间作用能随吸附量的变化特点反映了超临界温度甲烷以类似于压缩气体状态聚集的特点和吸附剂结构上的差异。碳基吸附剂的比表面积和微孔容积是影响其储存甲烷容量的重要因素。 相似文献
5.
This study shows how trace amounts of surfactants are adsorbed by activated carbon under competitive conditions in aqueous solution. Surfactants used as adsorbates are sodium dodecyl sulfate (SDS) and eicosaneoxyethylene hexadecyl ether (POE). Activated carbon used as an adsorbent is Pittsburgh activated carbon. Adsorption isotherms on the activated carbon were all Freundlich-type, both in the multi-solute system and in the mono-solute systems. The total adsorbed amount in the multi-solute system increases linearly with increasing molar fraction of SDS in the initial concentration. Thus, the total adsorbed amount in the multi-solute system can be estimated by the Freundlich constants, which can be determined from the single-solute equilibrium adsorptions, and molar fractions of adsorbates in the initial concentration. 相似文献
6.
模拟煤气的气氛,在硫化氢(H2S)和氧气(O2)存在条件下,对活性炭催化氧化吸附单质汞(Hg0)的性能进行了研究。结果表明,H2S和O2存在条件下,活性炭对Hg0的吸附能力明显提高。在180min内,H2S和O2共存气氛下,脱汞效率约为78%;只有H2S存在下,脱汞效率约为69%;没有H2S和O2气氛下活性炭脱汞效率快速下降为28%。随着吸附温度的升高,入口汞浓度的提高和吸附剂粒径的增大,活性炭的脱汞效率会随着下降。通过XRD表征表明,Hg0的吸附反应机理是Hg0在活性炭催化氧化下与H2S形成硫化汞(HgS),从而实现了Hg0的稳定化脱除。 相似文献
7.
甲烷在活性炭上吸附平衡模型的研究 总被引:1,自引:0,他引:1
比较吸附模型分析甲烷在活性炭上吸附平衡的适用性,为吸附式天然气(ANG)的工程应用提供准确的预测模型。基于在温度268.15~338.15 K、压力0~12.5 MPa测试的甲烷在Ajax活性炭上的吸附平衡数据,选择Langmuir、Langmuir-Freundlich和Toth方程,应用非线性回归拟合方程参数后,确定绝对吸附量和甲烷吸附相态,并比较方程在不同压力区域内的预测精度。结果表明,甲烷吸附相密度随平衡温度和压力变化;由绝对吸附量确定的甲烷在Ajax活性炭上的平均等量吸附热为15.72 kJ/mol,小于由过剩吸附量的标绘结果;Langmuir、Langmuir-Freundlich和Toth方程预测结果在0~0.025 MPa的累积相对误差为6.449 8%、7.918 4%和0.910 0%,在1~10 MPa为0.491 1%、0.161 3%和0.369 4%。Toth方程在整个压力范围内的预测结果最为准确,但Langmuir-Freundlich方程在较高压力区域内具有较高的预测精度。 相似文献
8.
X-ray microtomography coupled with image analysis was used to quantify the adsorption of vapours on activated carbon beds.
This technique was tested using three different challenges: CCl4, water vapour and a mixture of water- and organic vapour. It is shown that the used technique allows determining the adsorption
front progress in the case of organic vapour and mixture of water and organic vapour whereas the existence of this front was
not so obvious in the case of water vapour. Experimental results obtained for organic vapours were interpreted on the basis
of the Wheeler-Jonas equation: a good agreement was found between experimental and theoretical breakthrough times. 相似文献
9.
10.
11.
12.
A simple isotherm equation is derived for the adsorption of an organic component onto activated carbon in presence of water vapour. The theoretical results are compared with experimental data for toluene-water vapour-activated carbon, which were published byRipperger andGermerdonk [10].
Symbols a i adsorbate concentration in adsorbent, kg/kg of carbon - a 0i monolayer capacity, kg/kg of carbon - b i kinetic parameter of theLangmuir equation - E j adsorption energy in thej-th layer - i i-th component (1 — water vapour, 2 — organic compound) - j j-th layer - m number of layers - n number of adsorbed components - p partial pressure, Pa - p* saturation partial pressure, Pa - p C water vapour partial pressure at begining of capillary condensation, Pa - surface coverage 相似文献
Vorhersage der Adsorption einer organischen Komponente und Wasserdampf an Aktivkohle
Zusammenfassung Es wird eine einfache Adsorptionsisotherme abgeleitet, welche die gleichzeitige Adsorption eines organischen Stoffes und Wasser an Aktivkohle beschreibt. Die theoretischen Ergebnisse werden mit experimentellen Resultaten vonRipperger undGermerdonk [10] für Toluol-Wasser-Aktivkohle verglichen.
Symbols a i adsorbate concentration in adsorbent, kg/kg of carbon - a 0i monolayer capacity, kg/kg of carbon - b i kinetic parameter of theLangmuir equation - E j adsorption energy in thej-th layer - i i-th component (1 — water vapour, 2 — organic compound) - j j-th layer - m number of layers - n number of adsorbed components - p partial pressure, Pa - p* saturation partial pressure, Pa - p C water vapour partial pressure at begining of capillary condensation, Pa - surface coverage 相似文献
13.
《Arabian Journal of Chemistry》2020,13(3):4797-4810
This paper evaluated the efficiency and reusability of multiwall carbon nanotubes (MWNTs) on removal of cationic and anionic dyes under effect of pH, dose of MWNTs and concentration of dyes. The characterization of MWNTs is characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectra and BET (Brunauer, Emmett and Teller) surface area. SEM and TEM analyses showed that MWNTs had size within nano scale range of 10–50 nm. The experimental results indicated that the efficiency of removal of MWNTs increase under condition of normal pH, at contact time 60 min with agitation speed 240 rpm and initial concentration of dyes 10 mg/l. Under these optimal conditions, the removal reached 98.7% and 97.2% for anionic dyes and cationic dyes, respectively. For economic use, MWNTs can be used more than one time where the same experiments with the already used MWNTs was repeated and it was found that the percent removal is almost the same. 相似文献
14.
《印度化学会志》2023,100(1):100864
In this study, the aim was to produce the activated carbon from green coffee for use in liquid phase applications with adding zinc borate which was a boron chemical. Phosporic acid was chosen as the chemical activation material and different reaction parameters (percent of phosporic acid, amount of zinc borate) were tested during the process of chemical activation. The experimental sets were determined by using Taguchi optimization method and optimal conditions were obtained. Taguchi optimization method was preferred to reach optimum process parameters by using time and material in the most beneficial way. The effects of the process parameters (microwave drying time, temperature of carbonization and duration of carbonization) were investigated to determine the optimal sample. The characteristic properties of the obtained activated carbons were determined with Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller surface area analysis (BET), Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The samples of activated carbon produced were used for determination of the iodine number and the adsorption of heavy metal Cr (VI) ions from solution. Analysis and studies of adsorption showed that activated carbon was produced successfully. The activated carbon was evaluated in liquids phase applications and Langmuir isotherm was found more applicable and experimental data was proper with the second-order kinetic model. 相似文献
15.
采用浸渍氮气保护焙烧法,以自制碳酸锶、氯化铁和工业活性炭为原料,制备了介孔磁性活性炭.采用红外光谱、N2吸附、X光衍射、振动样品磁强计等手段和以吸附KMnO4作为探针实验,表征了样品的性质和吸附性能.结果表明,磁性活性炭是具有较高微孔率的介孔磁性材料,其微孔率为45.74%.该材料的饱和磁化强度为19.6emu/g,矫顽力为239.7Oe,易于吸附后的磁分离,且具有一定的抗退磁能力.对KMnO4的吸附探针实验表明其吸附本质为物理吸附.Freundlich吸附等温式可描述KMnO4在磁性活性炭上的吸附平衡,准二级动力学方程是描述KMnO4在磁性活性炭上吸附的最佳吸附动力学模型.本研究有望为特种废水处理剂提供新型功能性材料. 相似文献
16.
17.
18.
Co-pyrolysis at relatively low temperature (673 K) and high pressure (10 MPa), using three organic compounds, was used to
modify the porosity of the two ACs. The co-pyrolysis is effective for the modification of the porosity of an AC, and the efficiency
depends on the organic compound used. The differences found are consequence of the chemical composition of the organic precursor.
High pressure pyrolysis produces beneficial results when an organic compound that volatilizes during the preparation is used.
Conducting pyrolysis at low temperature permits improved control of the porosity because the rate of gasification can be more
tightly controlled. 相似文献
19.
The adsorption of lead(II) and copper(II) on an activated carbon (Filtrasorb 300, Chemviron) was characterized assuming that it takes place by formation of complexes with functional groups, present in the activated carbon. Their concentration and conditional adsorption coefficients were determined for each metal by titration of the carbon in suspension in aqueous phase, at constant acidity, with the metal itself. For each titration point, the concentration of the metal in the solution phase after equilibration was determined, and the data were processed by the Ruzic linearization method, to obtain the concentration of the active sites involved in the sorption, and the conditional constant. The effect of the pH was also examined, in the range 4-6, obtaining that the adsorption increases at increasing pH. The protonation and adsorption constants were determined from the conditional adsorption coefficients obtained at the different acidities. The concentration of the active sites is 0.023 and 0.042 mmol g−1, and the protonation constants are 1.0×106 and 4.6×104 M−1 for Pb(II) and Cu(II). The corresponding adsorption constants are respectively 1.4×105 and 6.3×103 M−1. All the parameters are affected by a large uncertainty, probably due to the heterogeneity of the active groups in the activated carbon. Even if so, these parameters make it possible a good prediction of the adsorption in a wide range of conditions. Other sorption mechanism can be set up at different conditions, in particular at different pH, as it has been demonstrated in the case of copper(II). 相似文献
20.
《先进技术聚合物》2018,29(1):319-328
The equilibrium adsorption isotherms of carbon dioxide and nitrogen on the nitrogen doped activated carbon (NAC) prepared by the chemical activation of a pine cone‐based char/polyaniline composite were measured using a volumetric technique. CO2 and N2 adsorption experiments were done at three different temperatures (298, 308, and 318 K) and pressures up to 16 bar, and correlated with the Langmuir, Freundlich, and Sips models. The Sips isotherm model presented the best fit to the experimental data. The N‐doped adsorbent showed CO2 and N2 adsorption capacity of 3.96 mmol·g−1 and 0.86 mmol·g−1, respectively, at 298 K and 1 bar. The selectivity predicted by ideal adsorbed solution theory (IAST) model was achieved 47.17 for NAC at 1 bar and yN2 = 0.85 which is a composition similar to flue gas. The results showed that NAC adsorbent has a high CO2‐over‐N2 selectivity in a binary mixture. The relatively fast sorption rate of CO2 on NAC compared to N2 indicates the stronger affinity between CO2 and amine groups. The isosteric heat of adsorption of CO2 by the NAC demonstrated the physico‐chemical adsorption of CO2 on the adsorbent surface. These data showed that prepared NAC could be successfully applied in separation of CO2 from N2. 相似文献