首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

2.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF-8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF-8。在对Fe3O4@PAA@ZIF-8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示Fe3O4@PAA@ZIF-8具有明显的三层结构,Fe3O4的平均粒径为117nm,PAA层厚度约为17 nm,ZIF-8层的厚度约为14 nm。Fe3O4@PAA@ZIF-8对MG的吸附量随着p H的升高而增大,吸附过程符合准二阶动力学模型和Langmuir等温吸附模...  相似文献   

3.
设计并合成了一种以磁性纳米粒子为核,聚合物为中间层,金属有机骨架材料为外层的三层结构磁性复合材料(Fe3O4@PAA@ZIF 8)。首先利用溶剂热法制备Fe3O4纳米粒子,然后通过蒸馏沉淀聚合法在Fe3O4纳米粒子表面包覆聚丙烯酸(PAA)层,最后通过原位沉积法在PAA外部包覆ZIF 8。在对Fe3O4@PAA@ZIF 8的组成和结构进行表征的基础上,深入研究其对孔雀石绿(MG)的吸附性能。透射电子显微镜(TEM)显示 Fe3O4@PAA@ZIF 8 具有明显的三层结构,Fe3O4的平均粒径为 117nm,PAA 层厚度约为 17 nm,ZIF 8层的厚度约为 14 nm。Fe3O4@PAA@ZIF 8对 MG 的吸附量随着 pH 的升高而增大,吸附过程符合准二阶动力学模型和 Langmuir等温吸附模型。此外,Fe3O4@PAA@ZIF 8还表现出良好的重复利用性能,8次循环利用后对MG(500 mg·L-1)的最大吸附量仍可达982 mg·g-1。  相似文献   

4.
This work describes a magnetic Fe3O4/graphene oxide (GO)-based solid-phase extraction (MSPE) technique for high performance liquid chromatography (HPLC) detection of malachite green (MG) and crystal violet (CV) in environmental water samples. Fe3O4/ GO magnetic nanoparticles were synthesised by a chemical co-precipitation method and characterised by scanning electron micrograph, transmission electron microscope, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and surface area analyser. The prepared Fe3O4/GO magnetic nanoparticles were used as the adsorbents of MSPE for MG and CV. By coupling with HPLC, a sensitive and cost-effective method for simultaneous determination of MG and CV was developed. The important parameters including the amount of Fe3O4/GO, pH of the sample solution, extraction time, salt effect, the type and volume of desorption solvent were investigated in detail. Under optimised conditions, the calibration curves were linear in the concentration range of 0.5–200 μg L?1, and the limits of detection were 0.091 and 0.12 μg L?1 for MG and CV, respectively. Finally, the established MSPE-HPLC method was successfully applied to determine MG and CV in environmental water samples with the recoveries ranging from 91.5% to116.7%.  相似文献   

5.
以有机碱四甲基氢氧化铵(TMAH)为沉淀剂合成了纳米Fe3O4和Co2+掺杂的纳米Fe3O4粒子。分别讨论了碱用量,铁盐溶液浓度,反应温度,有机碱及PEG-4000的分散性等因素对纳米Fe3O4的形貌影响。结果表明,所合成的纳米Fe3O4为30nm左右的反尖晶石型面心立方结构,有机碱除了起沉淀剂作用,还能够提高纳米Fe3O4的分散性。本文还讨论了不同Co2+掺入量的纳米Fe3O4粒子的磁性质,结果表明Co2+掺杂的纳米Fe3O4粒子的矫顽力在不同掺入量的下有较大的改变。当Co2+掺入量为10.0%时,纳米Fe3O4的矫顽力达到最大值,为1628Oe。  相似文献   

6.
In this study, the potential of MOF (Mil-101-Cr)-coated Fe3O4 magnetic nanoparticles (Fe3O4-MOF MNPs) for asphaltene adsorption was investigated for the first time and the results were compared with magnetic Fe3O4 nanoparticles (Fe3O4 MNPs). The coprecipitation method was used for the synthesis of both nanoparticles and were verified using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The initial asphaltene concentration, nanoparticles concentration, and temperature were the investigated parameters that influenced the adsorption capacity. Increasing the asphaltene concentration, decreasing the mass of nanoparticles, and reducing the temperature could enhance the maximum asphaltene adsorption capacities of 0.79 for Fe3O4 MNPs and 0.98?mg?m?2 for Fe3O4-MOF MNPs. Adsorption isotherms tests showed that the Langmuir model was in agreement with the experimental data. In addition, the evaluation of adsorption kinetics demonstrated that the pseudo-second-order Lagergren model predicted the results more precisely. The amount of asphaltene adsorption for Fe3O4-MOF MNPs was higher than that for Fe3O4 MNPs. These results recommend the application of MOF as an appropriate and effective coating for enhancing asphaltene adsorption.  相似文献   

7.
The objective of the present study was to investigate the potential use of applying polythiophene coating on magnetic Fe3O4 nanoparticles for the enhancement of asphaltene adsorption. Two stages of experimental were conducted. In the first stage, the ability of coated nanoparticles for asphaltene adsorption in synthetic asphaltene-toluene solution was evaluated. The effects of parameters such as nanoparticles concentration, initial concentration of asphaltene, and temperature were studied. In the second stage, the performance of the coated nanoparticles for the adsorption of asphaltene from crude oil was investigated under atmospheric pressure and a pressure-volume-temperature (PVT) apparatus was utilized for simulated reservoir conditions. Fe3O4 and Fe3O4-PT MNPs were synthesized using an effective co-precipitation method. The results of the first-stage tests indicated that the maximum adsorption capacity values for Fe3O4 and Fe3O4-PT MNPs were 0.79 and 1.09?mg?m?2, respectively. The optimum value of nanoparticles concentration was approximately determined as 10?g?L?1. According to the adsorption isotherms and kinetics, the Langmuir and pseudo-second-order Lagergren models were consistent with the experimental data, respectively. The average adsorption efficiencies for Fe3O4-PT and Fe3O4 MNPs were 78.98 and 65.94%, respectively. The results of the performed experiments on crude oil showed that Fe3O4-PT MNPs could adsorb asphaltenes from crude oil in a similar trend as synthetic asphaltene-toluene solution.  相似文献   

8.
采用三种低温溶胶-凝胶法制备了具有不同Fe3O4掺杂量的磁靶向纳米Fe3O4-TiO2复合物, 通过X射线衍射(XRD)、透射电镜(TEM)、傅里叶变换红外(FTIR)光谱、紫外-可见(UV-Vis)光谱、荧光光谱(FS)及磁性能分析等表征方法筛选出包覆均匀、分散性好、磁性能优异及光催化活性较高的纳米Fe3O4-TiO2复合物. 以四甲基偶氮唑蓝(MTT)法检测肝癌细胞(HepG2)的存活率, 考察纳米Fe3O4-TiO2复合物在外磁场作用下对HepG2 细胞的光催化杀伤效应. 结果表明: 采用方法三制备的5%(质量分数)Fe3O4-TiO2复合物具备核-壳结构, 在混悬液中分散性较好, 平均粒径约为50 nm, 具有较强的光催化活性和良好的磁响应性, 同时将纳米TiO2的光响应范围拓宽至444 nm; 在外磁场作用下, 紫外光和可见光激发纳米Fe3O4-TiO2复合物对HepG2细胞的杀伤效应差异不大, 且均强于纳米TiO2; 其杀伤效应在0-1.0 T范围内随着外磁场强度的增大而增强.  相似文献   

9.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

10.
制备了油酸修饰的Fe_3O_4纳米粒子,利用盐酸多巴胺对其表面进行氨基化改性,制得水分散性良好的Fe_3O_4纳米粒子,用X射线衍射、透射电镜、傅里叶变换红外光谱仪、振动样品磁强计和紫外-可见吸收光谱进行表征。随后,将氨基修饰的三磷酸腺苷(ATP)适体接枝到Fe_3O_4纳米粒子上,结合荧光素酶化学发光法进行ATP的定量检测,并应用于市售酸奶中乳酸菌ATP含量的检测,其灵敏度高、重现性好。各项实验结果表明所制备的Fe_3O_4纳米粒子是一种分散性好、易分离的载体,其粒径均一、稳定、磁性强、与适体结合性能好,拓展了Fe_3O_4纳米粒子在分析检测领域的应用。  相似文献   

11.
制备了油酸修饰的Fe3O4纳米粒子,利用盐酸多巴胺对其表面进行氨基化改性,制得水分散性良好的Fe3O4纳米粒子,用X射线衍射、透射电镜、傅里叶变换红外光谱仪、振动样品磁强计和紫外-可见吸收光谱进行表征。随后,将氨基修饰的三磷酸腺苷(ATP)适体接枝到Fe3O4纳米粒子上,结合荧光素酶化学发光法进行ATP的定量检测,并应用于市售酸奶中乳酸菌ATP含量的检测,其灵敏度高、重现性好。各项实验结果表明所制备的Fe3O4纳米粒子是一种分散性好、易分离的载体,其粒径均一、稳定、磁性强、与适体结合性能好,拓展了Fe3O4纳米粒子在分析检测领域的应用。  相似文献   

12.
Polyaniline (PANI) nanotubes containing Fe3O4 nanoparticles were synthesized under ultrasonic irradiation of the aqueous solutions of aniline, ammonium peroxydisulfate (APS), phosphoric acid (H3PO4), and the quantitative amount of Fe3O4. It was found that the obtained samples had the morphologies of nanotubes. TEM images and selected area electronic diffractions showed that Fe3O4 nanoparticles were embedded in PANI nanotubes. We thought that the mechanism of the formation of PANI/Fe3O4 nanotubes could be attributed to the ultrasonic irradiation and the H3PO4-aniline salt template. The molecular structure of PANI/Fe3O4 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectra and X-ray diffraction (XRD). The conductivity and magnetic properties of the PANI nanotubes containing Fe3O4 nanoparticles were also investigated.  相似文献   

13.
Fe3O4 nanoparticles were indirectly implanted onto functionalized multi‐walled carbon nanotubes (MWCNTs) leading to a nanocomposite with stronger magnetic performance. Poly(acrylic acid) (PAA) oligomer was first reacted with hydroxyl‐functionalized MWCNTs (MWCNTs‐OH) forming PAA‐grafted MWCNTs (PAA‐g‐MWCNTs). Subsequently, Fe3O4 nanoparticles were attached onto the surface of PAA‐g‐MWCNTs through an amidation reaction between the amino groups on the surface of Fe3O4 nanoparticles and the carboxyl groups of PAA. Fourier transform infrared spectra confirmed that the Fe3O4 nanoparticles and PAA‐g‐MWCNTs were indeed chemically linked. The morphology of the nanocomposites was characterized using transmission electron microscope (TEM). The surface and bulk structure of the nanocomposites were examined using X‐ray diffraction, X‐ray photoelectron spectrometer (XPS), and thermogravimetric analysis (TGA). The magnetic performance was characterized by vibrating sample magnetometer (VSM) and the magnetic saturation value of the magnetic nanocomposites was 47 emu g?1. The resulting products could be separated from deionized water under an external magnetic field within about 15 s. Finally, the magnetorheological (MR) performances of the synthesized magnetic nanocomposites and pure Fe3O4 nanoparticles were examined using a rotational rheometer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
《Analytical letters》2012,45(12):1604-1616
In this paper, a novel amperometric immunosensor for the determination of carbofuran based on gold nanoparticles (GNPs), magnetic Fe3O4 nanoparticles-functionalized multiwalled carbon nanotubes-chitosan (Fe3O4-FCNTs-CS), and bovine serum albumin (BSA) composite film was proposed. First, GNPs were immobilized onto the glassy carbon electrode (GCE) surface, and then the magnetic Fe3O4 nanoparticles mixed with chitosan-functionalized multiwall carbon nanotubes (CS-FCNTs) homogeneous composite (CS-FCNTs-Fe3O4) was immobilized onto the GNPs layer by electrostatic interactions between amino groups of CS and GNPs. Because chitosan (CS) contains many amino groups, it can absorb more antibodies. FCNTs have high surface area, high electrical conductivity, and it can enhance the electron transfer rate; Magnetite (Fe3O4) nanoparticles can provide a favorable microenvironment for biomolecules immobilization due to their good biocompatibility, strong superparamagnetic property, and low toxicity; and GNPs possess high surface-to-volume reaction, stability, and high conductivity. Gold Nanoparticles/Fe3O4-FCNTs-CS composite film was constructed onto the GCE surface, which had significant synergistic effects toward immunoreaction signal amplification. The stepwise assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Under the optimal conditions, the current response was proportional to the concentration of carbofuran ranging from 1.0 ng/mL to 100.0 ng/mL and from 100.0 ng/mL to 200 µg/mL with the detection limit 0.032 ng/mL. The proposed immunosensor exhibited good accuracy, high sensitivity, and stability, and it can be used for detection of carbofuran pesticide.  相似文献   

15.
The rabbit immunoglobulin antibodies (IgGs) have been immobilized onto nanobiocomposite film of chitosan (CH)–iron oxide (Fe3O4) nanoparticles prepared onto indium–tin oxide (ITO) electrode for detection of ochratoxin-A (OTA). Excellent film forming ability and availability of –NH2 group in CH and affinity of surface charged Fe3O4 nanoparticles for oxygen support the immobilization of IgGs. Differential pulse voltammettry (DPV) studies indicate that Fe3O4 nanoparticles provide increased electroactive surface area for loading of IgGs and improved electron transport between IgGs and electrode. IgGs/CH–Fe3O4 nanobiocomposite/ITO immunoelectrode exhibits improved characteristics such as low detection limit (0.5 ng dL−1), fast response time (18 s) and high sensitivity (36 μA/ng dL−1 cm−2) with respect to IgGs/CH/ITO immunoelectrode.  相似文献   

16.
TiO_2因具有多种优异的特性被广泛应用在半导体光催化领域,但是纳米结构的TiO_2颗粒细微,在进行光催化反应之后,难以回收再利用。本文以廉价钛铁矿为原料制备光催化剂TiO_2,同时利用副产物铁合成Fe_3O_4,并采用简单温和的浸渍法制备Fe_3O_4/TiO_2磁性复合材料。通过XRD、FT-IR、SEM、EDS等手段对材料形态结构进行表征分析,并以光降解有机污染物若丹明B为探针反应,考察其光催化性能。结果表明,质量比为1∶10的Fe_3O_4/TiO_2复合材料结构稳定、分散均匀,具有最优的光催化活性(波长356nm下反应3h,若丹明B降解率达到64.0%),并表现出良好的重复性。同时,动力学结果显示降解符合一级反应动力学。  相似文献   

17.
采用静电自组装方法,分两步合成Fe(OH)3/GO前驱体(GO:氧化石墨烯),再通过水热反应和600 ℃高纯氮气气氛下煅烧,获得了Fe3O4/石墨烯复合材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、拉曼(Raman)光谱等多种分析,发现该复合材料具有三维多孔石墨烯网络结构. 把合成的这种Fe3O4/石墨烯复合材料作为锂离子电池负极材料,电化学测试结果表明其具有优良的电化学性能:首次放电容量为1390 mAh·g-1,50次循环后容量为819 mAh·g-1. 通过对比实验表明,三维石墨烯网络结构的形成对复合材料的电化学循环稳定性起着关键作用.  相似文献   

18.
《Analytical letters》2012,45(10):1644-1653
An aqueous dispersion was prepared by attaching positively charged gold nanoparticles to the surface of poly-sodium-p-styrenesulfonate-modified Fe3O4 nanoparticles. The Fe3O4@positively charged gold nanoparticles offer high monodispersion, stability against aggregation, and high magnetization with uniform size. The Fe3O4@positively charged gold nanoparticles were efficient and recyclable catalysts due to the formation of a positively charged gold layer on the surface of Fe3O4 nanoparticles and were stable in aqueous solution for over forty-eight hours and hence may have a broad range of applications.  相似文献   

19.
This article reports the synthesis of the poly(sodium 4-styrenesulfonate)-grafted Fe3O4/SiO2 particles via two steps. The first step involved magnetite nanoparticles (Fe3O4) homogeneously incorporated into silica spheres using the modified Stöber method. Second, the modified silica-coated Fe3O4 nanoparticles were covered with the outer shell of anionic polyelectrolyte by surface-initiated atom transfer radical polymerization. The resulted composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive microscopy (EDS), Fourier transform-infrared (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and vibration sample magnetometer (VSM). The XRD results indicated that the surface modified Fe3O4 nanoparticles did not lead to phase change compared with the pure Fe3O4. TEM studies revealed nanoparticles remained monodisperse. The detection of sulfur and sodium signals was a convincing evidence that sodium 4-styrenesulfonate was grafted onto the surface of the magnetic silica in XPS analysis. Finally, super-paramagnetic properties of the composite particles, and the ease of modifying the surfaces may make the composites of important use in mild separation, enzyme immobilization, etc.  相似文献   

20.
Fe3O4@SiO2@polymer复合粒子的制备及在药物控制释放中的应用   总被引:1,自引:1,他引:0  
本文通过多步反应制备了一种新型的、多层结构的、多功能的磁性纳米复合粒子, (Fe3O4@SiO2@polymer). 纳米复合粒子内核是磁性Fe3O4纳米粒子, SiO2包裹在Fe3O4上能够使其稳定分散和保护其不被腐蚀氧化; 中间层是生物相容的聚天冬氨酸(PAsp)载药层; 最外层是亲水的聚乙二醇(PEG)稳定层. 磁性纳米复合粒子各层都是生物相容的, 利用静电作用将抗癌药物阿霉素(DOX)负载在磁性纳米复合粒子中, 通过PAsp的pH响应调节了DOX的释放速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号