首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
We report the synthesis of a hydrophilic copolymer with one polyethylene glycol (PEG) block and one β‐cyclodextrin (β‐CD) containing block by a “click” reaction between azido‐substituted β‐CD and propargyl flanking copolymer. 1H NMR study suggested a highly efficient conjugation of β‐CD units by this approach. The obtained copolymer was used as a host macromolecule to construct assemblies in the presence of hydrophobic guests. For assemblies containing a hydrophobic polymer, their size can be simply adjusted by simply changing the content of hydrophobic component. By serving as a guest molecule, hydrophobic drugs can also be loaded accompanying the formation of nanoparticles, and the drug payload is releasable. Therefore, the copolymer synthesized herein can be employed as a carrier for drug delivery.  相似文献   

2.
A novel biodegradable amphiphilic copolymer with hydrophobic poly(ε‐caprolactone) branches containing cholic acid moiety and a hydrophilic poly(ethylene glycol) chain was synthesized. The copolymer was characterized by FTIR, 1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), polarizing light microscopy (PLM), and wide‐angle X‐ray diffraction (WAXD) analysis. The amphiphilic copolymer could self‐assemble into micelles in an aqueous solution. The critical micelle concentration of the amphiphilic copolymer was determined by fluorescence spectroscopy. A nanoparticle drug delivery system with a regularly spherical shape was prepared with high encapsulation efficiency. The in vitro drug release from the drug‐loaded polymeric nanoparticles was investigated. Because of the branched structure of the hydrophobic part of the copolymer and the relatively fast degradation rate of the copolymer, an improved release behavior was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5256–5265, 2007  相似文献   

3.
Transport of surface active anesthetic drugs through silicone hydrogel contact lenses containing nanosized vitamin E aggregates is explored for achieving extended anesthetics delivery. Commercial silicone hydrogel contact lenses release most ophthalmic drugs including local anesthetics for only a few hours, which is not adequate. Here we focus on creating dispersion of highly hydrophobic vitamin E aggregates in the lenses as barriers for drug diffusion for increasing the release durations. This approach has been shown previously to be successful in extending the release durations for some common hydrophilic ophthalmic drugs. The topical anesthetic drugs considered here (lidocaine, bupivacaine, and tetracaine) are hydrophilic at physiologic pH due to the charge, and so these cannot partition into the vitamin E barriers. However, these surface active drug molecules adsorb on the surface of the vitamin E barriers and diffuse along the surface, leading to only a small decrease in the effective diffusivity compared to non-surface-active hydrophilic drugs. The drug adsorption can be described by the Langmuir isotherm, and measurements of surface coverage of the drugs on the vitamin E provide an estimate of the available surface area of vitamin E, which can then be utilized to estimate the size of the aggregates. A diffusion controlled transport model that includes surface diffusion along the vitamin E aggregates and diffusion in the gel fit the transport data well. In conclusion, the vitamin E loaded silicone contact lens can provide continuous anesthetics release for about 1-7 days, depending on the method of drug loading in the lenses, and thus could be very useful for postoperative pain control after corneal surgery such as the photorefractive keratectomy (PRK) procedure for vision correction.  相似文献   

4.
According to the concept of green chemistry and sustainable development, a new biodegradable copolymer comprised of hydrophobic poly(l-lactide) (PLLA) segments and hydrophilic cellulose segment (cellulose-g-PLLA) was designed and synthesized. The structure of the copolymer was characterized by (1)H NMR, FT-IR, (13)C NMR, DSC and WAXD. The cytotoxicity study shows that cellulose-g-PLLA exhibits good biocompatibility. The copolymer can self-assemble into micelles in water with the hydrophobic PLLA segments at the cores of micelles and the hydrophilic cellulose segments as the outer shells. Transmission electron microscopy (TEM) shows that the micelles exhibit nanospheric morphology within a size range of 30-80nm. The drug loaded micelles formed by the copolymer in aqueous media show sustained drug release which indicates their potential applicability in drug carrier.  相似文献   

5.
Here, we report the first example of transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers behaving like unimolecular micelles. Using the palladium-alpha-diimine chain walking catalyst, copolymerization of ethylene and comonomer 3 afforded, in one step, amphiphilic copolymer 1 having a hydrophobic core and a hydrophilic shell. A much larger amphiphilic core-shell copolymer 2 was synthesized by a two-step approach: a copolymer having many free hydroxyl groups was first prepared, which was subsequently coupled to poly(ethylene glycol) (PEG) to afford the copolymer 2. Light-scattering, fluorescence, and UV/vis spectroscopic studies with Nile Red in aqueous solution showed unimolecular micellar properties for both copolymers 1 and 2. The dye encapsulation capacity for the core-shell copolymers is nearly proportional to the molecular weight of the hydrophobic core. The unimolecular micellar properties coupled with the good water solubility and biocompatibility of the PEG moieties make these molecular nanocarriers promising candidates for many applications including drug delivery and controlled drug release.  相似文献   

6.
Poly(sebacic anhydride-co-ethylene glycol) was synthesized by using sebacic anhydride prepolymer and poly(ethylene glycol) for encapsulation of p-nitroaniline and brilliant blue G as modeling drugs to investigate the behavior of hydrophobic and hydrophilic drug release, respectively. Since p-nitroaniline is likely located in the sebacic anhydride-rich phase and brilliant blue G in the PEG-rich phase, respectively, their incorporation would affect the phase behavior of the host polymer. Different pore structure of eroded polymer matrix and drug release behavior were identified for hydrophobic and hydrophilic compounds. With a certain amount of PEG in the copolymer matrix, low drug release rate was accomplished for hydrophobic drug incorporation.  相似文献   

7.
The synthesis and drug release properties of crosslinked N-isopropylacrylamide (NiPAAm) copolymer coatings on the surface of a hydrophobic poly(ester-urethane) tubing were examined. A method was designed to coat hydrophobic polymer surface with a thermosensitive gel layer. Crosslinked NiPAAm copolymer coatings were synthesized using UV-initiated polymerization. The feasibility of using NiPAAm based gels as heparin releasing thermosensitive coatings was investigated. Heparin, a high molecular weight hydrophilic solute, was loaded into hydrogels using a simple solution sorption technique. The release of heparin from NiPAAm copolymer gel coatings was compared to that of crosslinked NiPAAm copolymers. The gel coatings demonstrated a more gradual and prolonged heparin release as compared to gel disks of the same composition.  相似文献   

8.
Wang Q  Zhu L  Li G  Tu C  Pang Y  Jin C  Zhu B  Zhu X  Liu Y 《Macromolecular bioscience》2011,11(11):1553-1562
A novel type of drug carrier capable of controlled drug release is proposed. It consists of an acid-sensitive doubly hydrophilic multiarm hyperbranched copolymer with a hyperbranched polyamidoamine core and many linear poly(ethylene glycol) arms. Using pH-sensitive acylhydrazone linkages, the polymer forms unimolecular micelles that can encapsulate hydrophobic drugs. Due to their amphiphilicity, the drug-loaded unimolecular micelles can self-assemble into multimolecular micelles that show acid-triggered intracellular delivery of the hydrophobic drugs.  相似文献   

9.
Polymer nanoparticulate drug delivery systems that respond to reactive oxygen species (ROS) and glutathione (GSH) simultaneously at biologically relevant levels hold great promise to improve the therapeutic efficacy to cancer cells with reduced side effects of chemo drugs. Herein, a novel redox dual‐responsive amphiphilic block copolymer (ABP) that consists of a hydrophilic poly (ethylene oxide) block and a hydrophobic block bearing disulfide linked phenylboronic ester group as pendant is synthesized, and the DOX loaded nanoparticles (BSN‐DOX) based on ABPs with varied hydrophobic block length are fabricated for DOX delivery. The self‐immolative leaving reaction of phenylboronic ester triggered by extracellular ROS and the cleavage of disulfide linkages induced by intracellular GSH both lead to rapid DOX release from BSN‐DOX, resulting in an on‐demand DOX release. Moreover, BSN‐DOX show better tumor inhibition and lower side effects in vivo compared with free drug.  相似文献   

10.
聚乙二醇-聚乳酸共聚物药物载体   总被引:3,自引:0,他引:3  
李晓然  袁晓燕 《化学进展》2007,19(6):973-981
本文综述了聚乙二醇与聚乳酸共聚亲水改性的最新进展, 包括嵌段和星型结构聚乙二醇-聚乳酸共聚物(PEG-PLA)及其端基化衍生物的合成。同时概述了该共聚物以胶束、微粒、水凝胶和囊泡形式担载亲水、疏水及蛋白质类药物的应用,特别介绍了静电纺丝制备的PEG-PLA超细纤维载体及其释药特性。  相似文献   

11.
Hydrogel formed by fluoroalkyl double-ended polyethylene glycol (Rf-PEG) micelles was studied to assess its properties to encapsulate a hydrophobic electron spin labeled drug, Chlorambucil–Tempol adduct (CT), and to control and sustain the drug release. The drug loaded hydrogel samples were characterized with variable-temperature dependent EPR experiment, and EPR theoretical lineshape analysis. It was found that CT molecules reside in the hydrophobic Rf-cores/IPDU shells of the Rf-PEG micelles and the maximum molecular-level loading capacity was estimated to be 18.8 mg per gram of the Rf-PEG. It has been known that Rf-PEG hydrogel with certain molecular masses for the fluoroalkyl group and the PEG chain shows properties of sol/gel phase coexistence and surface erosion, which represent the favorable condition for a pharmaceutical depot to control the kinetics of drug release. To evaluate the Rf-PEG’s biocompatibility and kinetics of the drug release, a cell proliferation assay was carried out on human oropharyngeal carcinoma (KB) cells. The results show that Rf-PEG is biocompatible and able to release CT to the cell media with a constant equilibrium concentration independent of the amount of CT loaded hydrogel.  相似文献   

12.
利用聚乙二醇(PEG 1500)引发乙交酯和D,L-丙交酯开环共聚合制备聚丙交酯乙交酯(PLGA)三嵌段共聚物(PLGA-PEG-PLGA)温敏水凝胶材料,并通过核磁共振氢谱(1H NMR)确定产物的结构及组成.应用倒置小瓶法测量得到不同浓度下PLGA-PEG-PLGA水凝胶的溶胶-凝胶相变温度为27~32℃.此外,体外降解实验及细胞毒性实验结果表明,质量分数为25%的水凝胶有满意的降解速度及良好的生物相容性.同时,利用紫外-可见光谱分析了载万古霉素水凝胶的体外药物释放行为,结果表明,万古霉素可以持续释放12 d.抗菌实验结果表明,载万古霉素水凝胶具有良好的抗菌效果.表明PLGA-PEG-PLGA三嵌段温敏水凝胶是一种较理想的万古霉素缓释载体,具有良好的临床应用前景.  相似文献   

13.
Self‐assembled, noncovalent polymeric biodegradable materials mimicking proteoglycan aggregates were synthesized from inclusion complexes of cationic surfactants with γ‐cyclodextrin and the natural anionic polymer hyaluronan. The amorphous structure of this ternary system was proven by X‐ray diffraction and thermal analysis. Light‐scattering measurements showed that there was a competition between hyaluronic acid and the surfactant for the cyclodextrin cavity. These self‐assembled supramolecular matrices were loaded with both hydrophilic and lipophilic drug substances for dissolution studies. The release of the entrapped drugs was found to be controlled by cations in the surrounding media and by biodegradation. Slow drug release in an ion‐free medium became faster in physiological salt solution in which the macroscopic polymer matrix was disassembled. In contrast, the enzymatic degradation of hyaluronan was hindered in the polymeric matrix. The supramolecular systems consisting of γ‐cyclodextrin as a macrocyclic host, a cationic surfactant guest, and hyaluronic acid as the anionic polymer electrostatically cross‐linked by the inclusion complex of the first two was found to be a novel drug‐delivery system for the controlled release of traditional drugs such as curcumin and ketotifen and proteins such as bovine serum albumin.  相似文献   

14.
The diblock copolymer, BP26, assembled into polymeric vesicles with double layers that formed a hydrophobic crystalline interior and a hydrophilic amorphous exterior in methanol, a selective solvent for the PEGT block. The vesicles were demonstrated to encapsulate a hydrophobic guest polyfluorene (PF).  相似文献   

15.
A series of poly(?‐caprolactone/glycolide)‐poly(ethylene glycol) (P(CL/GA)‐PEG) diblock copolymers were prepared by ring opening polymerization of a mixture of ?‐caprolactone and glycolide using mPEG as macro‐initiator and stannous octoate as catalyst. Self‐assembled micelles were prepared from the copolymers using nanoprecipitation method. The micelles were spherical in shape. The micelle size was larger for copolymers with longer PEG blocks. In contrast, the critical micelle concentration of copolymers increased with decreasing the overall hydrophobic block length. Drug loading and drug release studies were performed under in vitro conditions, using paclitaxel as a hydrophobic model drug. Higher drug loading was obtained for micelles with longer poly(ε‐caprolactone) blocks. Faster drug release was obtained for micelles of mPEG2000 initiated copolymers than those of mPEG5000 initiated ones. Higher GA content in the copolymers led to faster drug release. Moreover, drug release rate was enhanced in the presence of lipase from Pseudomonas sp., indicating that drug release is facilitated by copolymer degradation. The biocompatibility of copolymers was evaluated from hemolysis, dynamic clotting time, and plasma recalcification time tests, as well as MTT assay and agar diffusion test. Data showed that copolymer micelles present outstanding hemocompatibility and cytocompatibility, thus suggesting that P(CL/GA)‐PEG micelles are promising for prolonged release of hydrophobic drugs.  相似文献   

16.
Composite materials containing drugs were prepared from silicone rubber and hydrogel. Cross linked polyacrylamide (PAAm) hydrogel particles were incorporated into a silicone rubber to enhance the hydrophilicity and drug release capacity of silicone rubber as a matrix. Progesterone and Thymol Blue were used as a hydrophobic and hydrophilic drug model, respectively. Different amounts of polyacrylamide (PAAm) were mixed with the drugs and uncured silicone rubber at room temperature. The composite matrices were formed using a compression molding press and cured by thermal and γ-irradiation curing methods. In vitro drug release behavior of composites and their physical and mechanical properties were investigated. The results indicated that the hydrophilic character of silicone rubber was more pronounced with increasing the amount of PAAm. Also, a significant effect on the drug release profiles was observed. The γ-irradiation curing method improved mechanical properties of composites and affected the drug release profiles. It was found that the amounts of released progesterone from γ-irradiated samples increased in comparison with the thermally cross linked composite since released Thymol Blue was reduced.  相似文献   

17.
Biodegradable pasty-type copolyesters with a relatively low molecular weight of 4500 were synthesized by direct copolycondensation of epsilon-caprolactone (CL) and delta-valerolactone (VL) in the absence of catalysts to evaluate in vivo capabilities of the polymer for implantable controlled release devices in drug delivery systems. The devices in cylindrical shape were prepared by the melt-pressing technique using pasty-type copoly(CL/VL) with 53 mol% CL unit, in which Estracyt and estramustine were used as a water soluble and insoluble drug, respectively. The degradation and drug release in vivo of the devices were examined by subcutaneous implantation in the backs of male rats. The degradation of the device was remarkably accelerated by the presence of hydrophilic Estracyt, and was slightly suppressed by hydrohobic estramustine. The estramustine release profile roughly corresponded to the polymer degradation one. It was found that the degradation of the polymer in the device was affected by hydrophilicity of the drug. A reasonable release of estramustine from the device was kept for a period of more than 20 weeks. Furthermore, the release of the drugs in vivo was able to lead to an atrophy of accessory sex organs such as ventral prostates (VP) and right-side seminal vesicle (SV), resulting in pharmacological influence.  相似文献   

18.
基于聚合物复合物和层层组装技术实现了大分子药物硫酸软骨素和小分子药物头孢曲松钠在聚合物膜中的高效负载以及差别性释放. 壳聚糖(CHI)和大分子药物硫酸软骨素(CSS)通过静电相互作用力复合, 制备了壳聚糖-硫酸软骨素复合物(CHI-CSS). 以CHI-CSS复合物和透明质酸(HA)为构筑基元, 通过层层组装构筑负载有硫酸软骨素的聚合物复合物膜. 利用后扩散的负载方法将小分子药物头孢曲松钠(CTX)负载到聚合物膜中, 从而实现大分子和小分子2种药物在聚合物膜中的负载. 聚合物膜中负载的CTX和CSS在生理条件下具有快慢不同的差别性释放动力学特性, CTX在6 h内快速释放, 而CSS长效缓释长达14 d. 快速释放的抗生素CTX能够有效抑制细菌感染, 而酶降解作用下缓慢释放的CSS可促进伤口愈合, 在包括头颈外科在内的外科术后感染防治领域有良好应用前景.  相似文献   

19.
Four types of drug nanoparticles (NPs) based on amphiphilic hyperbranched block copolymers were developed for the delivery of the chemotherapeutic doxorubicin (DOX) to breast cancer cells. These carriers have their hydrophobic interior layer composed of the hyperbranched aliphatic polyester, Boltorn® H30 or Boltorn® H40, that are polymers of poly 2,2‐bis (methylol) propionic acid (bis‐MPA), while the outer hydrophilic shell was composed of about 5 poly(ethylene glycol) (PEG) segments of 5 or 10 kDa molecular weight. A chemotherapeutic drug DOX, was further encapsulated in the interior of these polymer micelles and was shown to exhibit a controlled release profile. Dynamic light scattering and transmission electron microscopy analysis confirmed that the NPs were uniformly sized with a mean hydrodynamic diameter around 110 nm. DOX‐loaded H30‐PEG10k NPs exhibited controlled release over longer periods of time and greater cytotoxicity compared with the other materials developed against our tested breast cancer cell lines. Additionally, flow cytometry and confocal scanning laser microscopy studies indicated that the cancer cells could internalize the DOX‐loaded H30‐PEG10k NPs, which contributed to the sustained drug release, and induced more apoptosis than free DOX did. These findings indicate that the H30‐PEG10k NPs may offer a very promising approach for delivering drugs to cancer cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
The model drugs ibuprofen (IBU) and tegafur (T-Fu) were loaded into poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] [P(NIPA-co-A-CD)] and PNIPA hydrogels by immersing dried gels in IBU or T-Fu alcohol solutions until they reached equilibrium. Drug release studies were carried out in water at 25 degrees C. In contrast to the release time of conventional PNIPA hydrogel, that of IBU from the beta-CD incorporated hydrogel was significantly prolonged and the drug loading was also greatly increased, which may be the result of the formation of inclusion complexes between CD and ibuprofen. However, another hydrophilic drug, tegafur, did not display these properties because it could not form a complex with the CD groups. [diagram in text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号