首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method given recently for deriving indefinite integrals of special functions which satisfy homogeneous second-order linear differential equations has been extended to include functions which obey inhomogeneous equations. The extended method has been applied to derive indefinite integrals for the Lommel functions, which obey an inhomogeneous Bessel equation. The method allows integrals to be derived for the inhomogeneous equation in a manner which closely parallels the homogeneous case, and a number of new Lommel integrals are derived which have well-known Bessel analogues. Results will be presented separately for other special functions which obey inhomogeneous second-order linear equations.  相似文献   

2.
A method is given for deriving indefinite integrals involving squares and other products of functions which are solutions of second-order linear differential equations. Several variations of the method are presented, which applies directly to functions which obey homogeneous differential equations. However, functions which obey inhomogeneous equations can be incorporated into the products and examples are given of integrals involving products of Bessel functions combined with Lommel, Anger and Weber functions. Many new integrals are derived for a selection of special functions, including Bessel functions, associated Legendre functions, and elliptic integrals. A number of integrals of products of Gauss hypergeometric functions are also presented, which seem to be the first integrals of this type. All results presented have been numerically checked with Mathematica.  相似文献   

3.
ABSTRACT

Elementary linear first and second order differential equations can always be constructed for twice differentiable functions by explicitly including the function's derivatives in the definition of these equations. If the function also obeys a conventional differential equation, information from this equation can be introduced into the elementary equations to give blended linear equations which are here called hybrid equations. Integration theorems are derived for these hybrid equations and several universal integrals are also derived. The paper presents integrals derived with these methods for cylinder functions, associated Legendre functions, and the Gegenbauer, Chebyshev, Hermite, Jacobi and Laguerre orthogonal polynomials. All the results presented have been checked using Mathematica.  相似文献   

4.
A method developed recently for obtaining indefinite integrals of functions obeying inhomogeneous second-order linear differential equations has been applied to obtain integrals with respect to the modulus of the complete elliptic integral of the third kind. A formula is derived which gives an integral involving the complete integral of the third kind for every known integral for the complete elliptic integral of the second kind. The formula requires only differentiation and can therefore be applied for any such integral, and it is applied here to almost all such integrals given in the literature. Some additional integrals are derived using the recurrence relations for the complete elliptic integrals. This gives a total of 27 integrals for the complete integral of the third kind, including the single integral given in the literature. Some typographical errors in a previous related paper are corrected.  相似文献   

5.
Integration formulas are derived for the three canonical Legendre elliptic integrals. These formulas are obtained from the differential equations satified by these elliptic integrals when the independent variable u is the argument of Jacobian elliptic function theory. This allows a limitless number of indefinite integrals with respect to the amplitude to be derived for these three elliptic integrals. Sample results are given, including the integrals derived from powers of the 12 Glaisher elliptic functions. New recurrence relations and integrals are also given for the 12 Glaisher elliptic functions.  相似文献   

6.
A new method is presented for deriving indefinite integrals involving quotients of special functions. The method combines an integration formula given previously with the recursion relations obeyed by the function. Some additional results are presented using an elementary method, here called reciprocation, which can also be used in combination with the new method to obtain additional quotient integrals. Sample results are given here for Bessel functions, Airy functions, associated Legendre functions and the three complete elliptic integrals. All results given have been numerically checked with Mathematica.  相似文献   

7.
Laguerre–Hahn families on the real line are characterized in terms of second-order differential equations with matrix coefficients for vectors involving the orthogonal polynomials and their associated polynomials, as well as in terms of second-order differential equation for the functions of the second kind. Some characterizations of the classical families are derived.  相似文献   

8.
Jacobian elliptic functions are used to obtain formulas for deriving indefinite integrals for the Jacobi Zeta function and Heuman's Lambda function. Only sample results are presented, mostly obtained from powers of the twelve Glaisher elliptic functions. However, this sample includes all such integrals in the literature, together with many new integrals. The method used is based on the differential equations obeyed by these functions when the independent variable is the argument u of elliptic function theory. The same method was used recently, in a companion paper, to derive similar integrals for the three canonical incomplete elliptic integrals.  相似文献   

9.
Two finite hypergeometric sequences of symmetric orthogonal polynomials of a discrete variable are introduced and their standard properties, such as second-order difference equations, explicit forms of the polynomials and three term recurrence relations are obtained. As a consequence of two specific Sturm–Liouville problems, it is proved that these polynomials are finitely orthogonal with respect to two symmetric weight functions.  相似文献   

10.
A substantial number of new indefinite integrals involving the incomplete elliptic integral of the third kind are presented, together with a few integrals for the other two kinds of incomplete elliptic integral. These have been derived using a Lagrangian method which is based on the differential equations which these functions satisfy. Techniques for obtaining new integrals are discussed, together with transformations of the governing differential equations. Integrals involving products combining elliptic integrals of different kinds are also presented.  相似文献   

11.
Inequalities satisfied by the zeros of the solutions of second-order hypergeometric equations are derived through a systematic use of Liouville transformations together with the application of classical Sturm theorems. This systematic study allows us to improve previously known inequalities and to extend their range of validity as well as to discover inequalities which appear to be new. Among other properties obtained, Szegő's bounds on the zeros of Jacobi polynomials for , are completed with results for the rest of parameter values, Grosjean's inequality (J. Approx. Theory 50 (1987) 84) on the zeros of Legendre polynomials is shown to be valid for Jacobi polynomials with |β|1, bounds on ratios of consecutive zeros of Gauss and confluent hypergeometric functions are derived as well as an inequality involving the geometric mean of zeros of Bessel functions.  相似文献   

12.
The main purpose of this paper is to display new families of matrix valued orthogonal polynomials satisfying second-order differential equations, obtained from the representation theory of U(n). Given an arbitrary positive definite weight matrix W(t) one can consider the corresponding matrix valued orthogonal polynomials. These polynomials will be eigenfunctions of some symmetric second-order differential operator D only for very special choices of W(t). Starting from the theory of spherical functions associated to the pair (SU(n+1), U(n)) we obtain new families of such pairs {W,D}. These depend on enough integer parameters to obtain an immediate extension beyond these cases.  相似文献   

13.
The Fourier transform of orthogonal polynomials with respect to their own orthogonality measure defines the family of Fourier–Bessel functions. We study the asymptotic behaviour of these functions and of their products, for large real values of the argument. By employing a Mellin analysis we construct a general framework to exhibit the relation of the asymptotic decay laws to certain dimensions of the orthogonality measure, that are defined via the divergence abscissas of suitable integrals. The unifying r?le of Mellin transform techniques in deriving classical and new results is underlined. Submitted: November 5, 2004. Accepted: January 6, 2006.  相似文献   

14.
In addition to the classic orthogonal polynomials which satisfy second order differential equations, there are a number of orthogonal polynomials which satisfy differential equations of orders four or six. Like the classic sets, they have distributional weight functions, are the eigenfunctions for certain self-adjoint boundary-value problems, and sometimes are involved with indefinite boundary-value problems.The purpose of this survey is to summarize the work of the last decade and to exhibit the state of the art as it now stands. Of particular interest is the development of the theory of singular Sturm-Liouville systems, which is so necessary in order to describe the boundary-value problems associated with these polynomials.  相似文献   

15.
Transformations of the measure of orthogonality for orthogonal polynomials, namely Freud transformations, are considered. Jacobi matrix of the recurrence coefficients of orthogonal polynomials possesses an isospectral deformation under these transformations. Dynamics of the coefficients are described by generalized Toda equations. The classical Toda lattice equations are the simplest special case of dynamics of the coefficients under the Freud transformation of the measure of orthogonality. Also dynamics of Hankel determinants, its minors and other notions corresponding to the orthogonal polynomials are studied.  相似文献   

16.
In this report, we consider two kind of general fractional variational problem depending on indefinite integrals include unconstrained problem and isoperimetric problem. These problems can have multiple dependent variables, multiorder fractional derivatives, multiorder integral derivatives and boundary conditions. For both problems, we obtain the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Also, we apply the Rayleigh-Ritz method for solving the unconstrained general fractional variational problem depending on indefinite integrals. By this method, the given problem is reduced to the problem for solving a system of algebraic equations using shifted Legendre polynomials basis functions. An approximate solution for this problem is obtained by solving the system. We discuss the analytic convergence of this method and finally by some examples will be showing the accurately and applicability for this technique.  相似文献   

17.
An explicit representation of the elements of the inverses of certain patterned matrices involving the moments of nonnegative weight functions is derived in this paper. It is shown that a sequence of monic orthogonal polynomials can be generated from a given weight function in terms of Hankel-type determinants and that the corresponding matrix inverse can be expressed in terms of their associated coefficients and orthogonality factors. This result enables one to obtain an explicit representation of a certain type of approximants which apply to a wide class of positive continuous functions. Convenient expressions for the coefficients of standard classical orthogonal polynomials such as Legendre, Jacobi, Laguerre and Hermite polynomials are also provided. Several examples illustrate the results.  相似文献   

18.
By using Fourier transforms of two symmetric sequences of finite orthogonal polynomials, we introduce two new classes of finite orthogonal functions and obtain their orthogonality relations via Parseval's identity.  相似文献   

19.
Using a particular way of normalizing the orthogonal polynomials, which is most commonly encountered in the synthesis of filtering networks in communication and electronic engineering, two theorems concerning the extremal properties of orthogonal polynomials are first proved. The results are then applied to find the minimum value and the minimizing function for various definite integrals involving weight functions of classical orthogonal polynomials.  相似文献   

20.
Polynomial dynamical systems describing interacting particles in the plane are studied. A method replacing integration of a polynomial multi-particle dynamical system by finding polynomial solutions of partial differential equations is introduced. The method enables one to integrate a wide class of polynomial multi-particle dynamical systems. The general solutions of certain dynamical systems related to linear second-order partial differential equations are found. As a by-product of our results, new families of orthogonal polynomials are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号