首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fume hoods are one of the most common types of equipment applied to reduce the potential of particle exposure in laboratory environments. A number of previous studies have shown particle release during work with nanomaterials under fume hoods. Here, we assessed laboratory workers’ inhalation exposure during synthesis and handling of CuO, TiO2 and ZnO in a fume hood. In addition, we tested the capacity of a fume hood to prevent particle release to laboratory air during simulated spillage of different powders (silica fume, zirconia TZ-3Y and TiO2). Airborne particle concentrations were measured in near field, far field, and in the breathing zone of the worker. Handling CuO nanoparticles increased the concentration of small particles (<?58 nm) inside the fume hood (up to 1?×?105 cm?3). Synthesis, handling and packaging of ZnO and TiO2 nanoparticles did not result in detectable particle release to the laboratory air. Simulated powder spills showed a systematic increase in the particle concentrations inside the fume hood with increasing amount of material and drop height. Despite powder spills were sometimes observed to eject into the laboratory room, the spill events were rarely associated with notable release of particles from the fume hood. Overall, this study shows that a fume hood generally offers sufficient exposure control during synthesis and handling of nanomaterials. An appropriate fume hood with adequate sash height and face velocity prevents 98.3% of particles release into the surrounding environment. Care should still be made to consider spills and high cleanliness to prevent exposure via resuspension and inadvertent exposure by secondary routes.  相似文献   

2.
Inhalation exposure to airborne nanoparticles (NPs) has been reported during manual activities using typical fume hoods. This research studied potential inhalation exposure associated with the manual handling of NPs using two new nanoparticle-handling enclosures and two biological safety cabinets, and discussed the ability to contain NPs in the hoods to reduce environmental release and exposure. Airborne concentrations of 5 nm to 20 μm diameter particles were measured while handling nanoalumina particles in various ventilated enclosures. Tests were conducted using two handling conditions and concentrations were measured using real-time particle counters, and particles were collected on transmission electron microscope grids to determine particle morphology and elemental composition. Airflow patterns were characterized visually using a laser-light sheet and fog. The average number concentration increase at breathing zone outside the enclosure was less than 1,400 particle/cm3 for each particle size at all tested conditions and the estimated overall mass concentration was about 83 μg/m3 which was less than the dosage of typical nanoparticle inhalation exposure studies. The typical front-to-back airflow was used in the studied hoods, which could potentially induce reverse turbulence in the wake region. However, containment of NPs using studied hoods was demonstrated with excellent performance. Smoke tests showed that worker’s hand motion could potentially cause nanoparticle escape. The challenge of front-to-back airflow can be partially overcome by gentle motion, low face velocity, and front exhaust to reduce nanoparticle escape.  相似文献   

3.
Editorial     
An overview of the special issue of the Journal of Nanoparticle Research on Occupational and Environmental Health of nanotechnology is presented. Papers published in this special issue show considerable progress in understanding nanoparticle toxicity, monitoring, generation, dustiness, filtration, and applications of nanoparticles. More research is needed to ensure safe handling of nanomaterials as nanotechnology continues to develop at an incredible pace.
Chuen-Jinn TsaiEmail:
  相似文献   

4.
This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005–20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1–10 μm) fraction, whereas the nano fraction contributed ~10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm−3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm−3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.
Dhimiter BelloEmail:
  相似文献   

5.
The properties of CuInS2 semi-conductor nanoparticles make them attractive materials for use in next-generation photovoltaics. We have prepared CuInS2 nanoparticles from single source precursors via microwave irradiation. Microwave irradiation methods have allowed us to increase the efficiency of preparation of these materials by providing uniform heating and rapid reaction times. The synergistic effect of varying thiol capping ligand concentrations as well as reaction temperatures and times resulted in fine control of nanoparticle growth in the 3–5 nm size range. Investigation of the photophysical properties of the colloidal nanoparticles were performed using electronic absorption and luminescence emission spectroscopy. Qualitative nanoparticles sizes were determined from the photoluminescence (PLE) data and compared to HRTEM images.
Joshua J. PakEmail:
  相似文献   

6.
Using the total radius of alkaline fluorides and sodium halides and their experimental total enthalpy values, absolute hydration enthalpies of sodium and fluoride ions ( and ) were previously calculated. Also, by the help of data of sodium and fluoride ions for all alkaline metal ions and halides absolute hydration enthalpies were determined.
Sevda AyataEmail:
  相似文献   

7.
The seminal paper by Ya. B. Zeldovich (Soviet Physics Uspekhi 11, 381–393, 1968) is reprinted here, together with an editorial comment on its lasting scientific relevance, and a biography of the author.
Andrzej KrasińskiEmail:
  相似文献   

8.
While several studies on the public opinion of nanotechnology have pointed to a rather enthusiastic U.S. public, the public uptake of nanotechnology in Europe is more contained. The results of the Swiss publifocus on nanotechnology reveal a pragmatic attitude of citizens toward the emerging technologies, thus confirming what has been identified as a “balanced approach” in the NanoJury UK.
Regula Valérie BurriEmail:
  相似文献   

9.
Graphs of the total radius (the distance between an anionic nuclei and a cationic nuclei in a crystal) of sodium halides and alkali metal fluorides versus total limiting equivalent conductivities were plotted. For the hard ions Na+ and F, whose behaviour approaches a hard spherical model, it was determined that radii values could be obtained using differences in limiting equivalent conductivities and ionic crystal data. From the determined radii of sodium and fluoride ions and known crystal data, radii of other alkali metal halides were calculated.
Sevda AyataEmail:
  相似文献   

10.
Size distributions of nanoparticles in the vicinity of synthesis reactors will provide guidelines for safe operation and protection of workers. Nanoparticle concentrations and size distributions were measured in a research academic laboratory environment with two different types of gas-phase synthesis reactors under a variety of operating conditions. The variation of total particle number concentration and size distribution at different distances from the reactor, off-design state of the fume hood, powder handling during recovery, and maintenance of reactors are established. Significant increases in number concentration were observed at all the locations during off-design conditions (i.e., failure of the exhaust system). Clearance of nanoparticles from the work environment was longer under off-design conditions (20 min) compared to that under normal hood operating conditions (4–6 min). While lower particle number concentrations are observed during operation of furnace aerosol reactors in comparison to flame aerosol reactors, the handling, processing, and maintenance operations result in elevated concentrations in the work area.  相似文献   

11.
To understand and engineer applications for mixed conducting oxides, it is desirable to have explicit, analytical expressions for the functional dependence of defect concentration and transport properties on the partial pressure of the external gas phase. To fulfill this need, general expressions are derived for the functional dependence of defect concentration on the oxygen partial pressure () for the mixed ionic electronic conductors. The model presented in this paper differs from expressions obtained using the popular Brouwer approach because they are continuous across multiple Brouwer regions.
Eric D. WachsmanEmail:
  相似文献   

12.
As technology has evolved available guidelines for normal-phase flash chromatography have become less relevant. Years of experience performing chromatography with disposable columns have been condensed into simple guidelines useful for translating TLC results into either isocratic- or gradient-flash chromatography. The described studies should provide researchers with a means of selecting adequate columns and guidelines to reduce the waste of solvents, silica, time, and money. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
William C. Stevens Jr.Email:
  相似文献   

13.
Nanoparticles of a two-dimensional coordination polymer, {[Pb(L)(μ1,1-NCS)(H2O)]}n (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy, X-ray powder diffraction, IR spectroscopy and elemental analyses. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal (DTA) analyses and compared each other. Concentration of initial reagents effects and the role of power ultrasound irradiation on size and morphology of nano-structured compound 1, have been studied. Calcination of the single crystals and nano-sized compound 1 at 400 °C under air atmosphere yields mixture of PbS and Pb2(SO4)O nanoparticles. Results show that the size and morphology of the PbS and Pb2(SO4)O nanoparticles are dependent upon the particles size of compound 1. A decrease in the particles size of compound 1 leads to a decrease in the particles size of the PbS and Pb2(SO4)O.  相似文献   

14.
Expert opinion on nanotechnology: risks,benefits, and regulation   总被引:2,自引:2,他引:0  
A survey of American (US) nanotechnology researchers (N = 177) suggests a diversity of views about what areas are most important to the burgeoning field, as well as perceptions about the overall benefits and risks of such research. On average, respondents saw a range of technologies as key and viewed public health and environmental issues as areas where both risks and the need for regulation are greatest. These areas were also where respondents said current regulations were least adequate. Factor analyses of the survey questions suggest that, when considering both risks and regulations, respondents make a distinction between health and environmental risks, and what might be termed “social risks” (e.g., invasion of privacy, use of nanotechnology in weapons, and economic impacts).
John C. BesleyEmail:
  相似文献   

15.
This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Donald A. TomaliaEmail:
  相似文献   

16.
Production and handling of manufactured nanoparticles (MNP) may result in unwanted worker exposure. The size distribution and structure of MNP in the breathing zone of workers will differ from the primary MNP produced. Homogeneous coagulation, scavenging by background aerosols, and surface deposition losses are determinants of this change during transport from source to the breathing zone, and to a degree depending on the relative time scale of these processes. Modeling and experimental studies suggest that in MNP production scenarios, workers are most likely exposed to MNP agglomerates or MNP attached to other particles. Surfaces can become contaminated by MNP, which constitute potential secondary sources of airborne MNP-containing particles. Dustiness testing can provide insight into the state of agglomeration of particles released during handling of bulk MNP powder. Test results, supported by field data, suggest that the particles released from powder handling occur in distinct size modes and that the smallest mode can be expected to have a geometric mean diameter >100 nm. The dominating presence of MNP agglomerates or MNP attached to background particles in the air during production and use of MNP implies that size alone cannot, in general, be used to demonstrate presence or absence of MNP in the breathing zone of workers. The entire respirable size fraction should be assessed for risk from inhalation exposure to MNP.  相似文献   

17.
R. J. Darby  I. Farnan  R. V. Kumar 《Ionics》2009,15(2):183-190
The effect of co-doping yttria-stabilised zirconia with calcia and scandia has been investigated. Changes in the yttrium ion local environment have been monitored using solid-state magic angle sample spinning 89Y nuclear magnetic resonance. The effect on the low-temperature (below 320 °C) bulk ionic conductivity has been observed using AC impedance spectroscopy. It was found that the number of oxygen vacancies in the nearest-neighbour sites to yttrium ions decreased on co-doping with scandia, correlating with an increase in conductivity, but increased on co-doping with calcia, correlating with a decrease in conductivity. This behaviour can be explained by proposing the trapping of oxygen vacancies in the nearest-neighbour yttrium ion sites so that they no longer contribute to the conduction mechanism.
R. J. DarbyEmail:
  相似文献   

18.
This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R&D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies.
Philip ShapiraEmail:
  相似文献   

19.
Refining search terms for nanotechnology   总被引:5,自引:3,他引:2  
The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology’s research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as “nano”) given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.
Jan YoutieEmail:
  相似文献   

20.
Understanding the toxicity of nanomaterials and nano-enabled products is important for human and environmental health and safety as well as public acceptance. Assessing the state of knowledge about nanotoxicology is an important step in promoting comprehensive understanding of the health and environmental implications of these new materials. To this end, we employed bibliometric techniques to characterize the prevalence and distribution of the current scientific literature. We found that the nano-toxicological literature is dispersed across a range of disciplines and sub-fields; focused on in vitro testing; often does not specify an exposure pathway; and tends to emphasize acute toxicity and mortality rather than chronic exposure and morbidity. Finally, there is very little research on consumer products, particularly on their environmental fate, and most research is on the toxicity of basic nanomaterials. The implications for toxicologists, regulators and social scientists studying nanotechnology and society are discussed.
Barbara Herr HarthornEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号