首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the blend fibers of ultrahigh molecular weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) were prepared by solution blending and gel spinning process. The uniformity of the blend fibers has been confirmed by rheological data and thermodynamic unimodal curve. They were further characterized by single fiber strength test, scanning electron microscopy, wide-angle X-ray diffraction, small-angle X-ray scattering, and so forth, to explore the structural evolution mechanism with the change of UHMWPE content. The results showed that when the molar content of UHMWPE was only 2.9 mol%, entanglement appeared in the structure of shish-kebab, and when the proportion reached 20 mol%, an interlocking structure could be observed. With the increase of UHMWPE content, kebab began to be networked, and when the content reached 33 mol%, kebab's orientation reached its peak. After that, the interlocking network structure gradually improved. When the content reached 50 mol%, the shish's orientation reached saturation, and the shish-kebab network became perfect. In addition, with the increase of UHMWPE content, stress-induced recrystallization occurred on the wafer, some kebab would be converted into shish crystals, and when the content exceeded 50 mol%, the microfibers began to merge, and the wafer became denser, but still had entanglements. Our work has proposed a quantitative explanation for the evolution of hierarchical crystal structure of HDPE/UHMWPE blend fibers.  相似文献   

2.
王宗宝 《高分子科学》2017,35(4):524-533
The gel-spun ultra-high molecular weight polyethylene(UHMWPE) fibers were prepared at the industrial production line with different gel solution concentrations of 15 wt%, 18 wt% and 24 wt%. The difference in ultimate structure and mechanical properties of UHMWPE fibers for different gel solution concentrations were analyzed by tensile testing, differential scanning calorimetry(DSC), wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS). With the increase of gel solution concentration, the ultimate mechanical properties of UHMWPE fibers were decreased and the crystallization and orientation of UHMWPE fibers became inferior. Besides, both the average shish length(〈L _(shish)〉) and shish misorientation(B_φ) of UHMWPE fibers were decreased with the increase of gel solution concentration. In addition, the appropriate increase of spinning temperature led to the further optimization of the ultimate structure and mechanical properties of UHMWPE fibers.  相似文献   

3.
The crystalline and oriented morphologies of isotactic polypropylene (iPP), ultrahigh molecular weight polyethylene (UHMWPE) and β-nucleating agent (β-NA) blends molded by micro-injection were investigated via polarized light microscopy, scanning electron microscopy, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that the addition of β-NA raised the onset crystallization temperature and the relative crystallinity of the β crystals of the micro-injection molding (MIM) specimens because of its strong heterogeneous nucleating effect in the iPP matrix. The introduction of UHMWPE, because of its “maintaining-orientation” effect, increased the thickness of the shish–kebab structure in the skin layer and induced the formation of perfect β cylindrulites that are epiphytic and symmetrical on the surface of long fibrous crystals. Furthermore, stratiform β crystals induced by the combined effects of strong shear flow field and addition of UHMWPE and β-NA were observed and investigated. Such a unique structure provides an effective way to tune the mechanics of MIM parts.  相似文献   

4.
Polyoxymethylene (POM) fiber was produced by melt spinning with a high take‐up speed, which imposed a strong flow field. An unexpected formation of a shish‐kebab morphology with multiple shish of POM fibers was reported for the first time. This morphology is a large‐scale shish kebab with a diameter of 10.5 µm. Further orientation of the POM fiber was obtained by hot stretching twice at 160°C. Two crystalline morphology evolution processes were also observed: (i) the process from the large‐scale shish‐kebab to the deformed small shish‐kebab and (ii) the process from the deformed small shish‐kebab to the perfect whiskers. Compared with the melt spinning fiber, fiber tensile strength with first and second hot stretching increased by 976% and 1705%, respectively. The crystalline melting behavior of fibers significantly changes after the first and second hot stretching. The flow field induces a large number of extended chain crystals. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Structural evolution of gel‐spun ultra‐high molecular weight polyethylene fibers with high concentration solution via hot stretching process was investigated by in situ small‐angle X‐ray scattering, in situ wide‐angle X‐ray diffraction measurements, scanning electron microscopy, and differential scanning calorimetry. With the increase of stretching strain, the long period continuously increases at relative lower stretching temperature, while it first increases and then decreases rapidly at relative higher stretching temperature. The kebab thickness almost keeps constant during the whole hot‐stretching process and the kebab diameter continually decreases for all stretching temperatures. Moreover, the length of shish decreases slightly and the shish quantity increases although there is almost no change in the diameter of shish crystals during the hot stretching process. The degree of crystal orientation at different temperatures is as high as above 0.9 during the whole stretching process. These results indicate that the shish‐kebab crystals in ultra‐high molecular weight polyethylene fibers can transform continuously into the micro‐fibril structure composed mostly of shish crystals through the hot stretching process. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 225–238  相似文献   

6.
The effects of ultrahigh molecular weight polyethylene (UHMWPE) and mould temperature (Tmould) on an isotactic polypropylene (iPP) matrix moulded via micro-injection were investigated via polarized light microscopy, scanning electron microscopy, differential scanning calorimetry, wide-angle X-ray diffraction and small-angle X-ray scattering. Results showed that the complex viscosity of the system increased significantly when the UHMWPE content was more than 5%; however, this viscosity decreased when the UHMWPE content was less than 5%. In addition, the addition of UHMWPE increased the onset of crystallisation temperature and the relative crystallinity of the β-form crystals in micro-injection moulded specimens. Moreover, the UHMWPE phase induced the formation of fan-shaped β crystals in iPP/UHMWPE blends. When mould temperature was 50 °C, the degree of orientation of microparts increased and the crystalline structures were highly compact. However, the relative crystallinity of the β-phase form (Kβ) was lower than those prepared at 130 °C Tmould. Most importantly, well-oriented, bundle-like β crystals have been discovered for the first time in 5 wt.% UHMWPE/iPP blends obtained at 130 °C Tmould owing to the “orientation-maintenance” and “shear-amplification” effects of UHMWPE.  相似文献   

7.
The hierarchy structures and orientation behavior of high-density polyethylene (HDPE) molded by conventional injection molding (CIM) and gas-assisted injection molding (GAIM) were intensively examined by using scanning electronic microscopy (SEM) and 2D wide-angle X-ray diffraction (2D-WAXD). Results show that the spatial variation of crystals across the thickness of sample molded by CIM was characterized by a typical skin–core structure as a result of general shear-induced crystallization. Unusually, the crystalline morphologies of the parts prepared by GAIM, primarily due to the penetration of secondary high-compressed gas that was exerted on the polymer melt during gas injection, featured a richer and fascinating supermolecular structure. Besides, the oriented lamellar structure, general shish–kebab structure, and common spherulites existed in the skin, sub-skin, and gas channel region, respectively; a novel morphology of shish–kebab structure was seen in the sub-skin layer of the GAIM parts of HDPE. This special shish–kebab structure (recognized as “bending shish–kebab”) was neither parallel nor perpendicular to the flow direction but at an angle. Furthermore, there was a clear interface between the bending and the normal shish–kebab structures, which may be very significant for our understanding of the melt flow or polymer rheology under the coupling effect of multi-fluid flow and complex temperature profiles in the GAIM process. Based on experimental observations, a schematic illustration was proposed to interpret the formation mechanism of the bending shish–kebab structure during GAIM process.  相似文献   

8.
Polyamide 6 (PA6) solutions in formic acid (FA) and deionized water cosolvent may behave as polyelectrolyte or neutral solutions depending on the cosolvent composition. In this study, both polyelectrolyte and neutral PA6 solutions were prepared for electrospinning, and their spinnability was correlated with their rheological properties. In addition, the effects of PA6 average molecular weight and carbon nanocapsule (CNC) nanoparticle addition on solution rheology and electrospinnability were investigated. Microstructure and thermal properties of the as-spun fibers were identified by wide-angle X-ray diffraction, polarized Fourier infrared spectroscopy, and differential scanning calorimetry (DSC). Due to the chain expansion, polyelectrolyte solutions with 99 vol.% FA solvent possess much lower entanglement concentration (?e, ∼1 wt.%) than neutral solutions (∼7 wt.%) prepared by 90 and 85 vol.% FA solvent. Compared with the neutral solution, the polyelectrolyte solution is more advantageous because a lower concentration is sufficient to obtain bead-free PA6 fibers. However, at a concentrated regime of 15 wt.% solution, the obtained fibers exhibit a larger diameter due to the higher entanglement density. For the crystalline structure, the content and orientation of α-form crystals are higher in the PA6 fibers obtained from the polyelectrolyte than from the neutral solution. When PA6 with a lower molecular weight is used, a higher concentration is required to develop the entangled chains to produce bead-free fibers. Homogeneous PA6 solutions filled with CNCs exhibit more elastic behavior than unfilled solutions due to the presence of the CNC–CNC network, aside from the entangled network of PA6 chains. Electrospinning of the CNC-filled solutions yields PA6 fibers with CNC aggregates protruding from the fiber surface. The inclusion of CNC in the PA6/FA solution produces fibers possessing enhanced α-form crystals with reduced orientation. In all cases, DSC heating traces of the as-spun fibers identify a high melting temperature (HMT) phase of PA6. The amount of HMT phase decreases, provided that more water or CNCs are added into the PA6/FA solution for electrospinning.  相似文献   

9.
Formation of shish‐kebab crystals due to the coil–stretch transition under shear in the molten state using a bimodal polyethylene system with high molecular weight (HMW) fraction having different branch content was investigated. In specific, in situ small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques were used to study the structure evolution of shish‐kebab crystals at high temperatures under simple shear. The SAXS results revealed that with the increase of branch content, shish‐kebab crystals became more stable at high temperatures (e.g., 139 °C). However, the shish length of the bimodal PE containing 0.11% branch was shorter than that with no branch. The WAXD results showed that the degree of crystallization for bimodal PE with HMW fraction having 0.11% branch increased with time but reached a plateau value of 1%, while that with no branch increased continuously till 11%. Furthermore, the crystal orientation of bimodal PE with HMW fraction having 0.11% branch was above 0.9 and maintained at a constant value, while that with no branch decreased from 0.9 to 0.1 upon relaxation. This study indicates that even though the crystallizability of the HMW fraction with branch content decreased, they could effectively stabilize the shear‐induced crystalline structure with shorter shish‐kebab crystals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 786–794  相似文献   

10.
傅强 《高分子科学》2014,32(2):245-254
The combined effects of stretching and single-walled carbon nanotubes (SWCNTs) on crystalline structure and mechanical properties were systematically investigated in melt-spun polypropylene (PP) fibers prepared at two different draw ratios. The dispersion, alignment of the SWCNT bundles and interfacial crystalline structure in the composite fibers are significantly influenced by the stretching force during the melt spinning. The nanohybrid shish kebab (NHSK) superstructure where extended PP chains and aligned SWCNT bundle as hybrid shish and PP lamellae as kebab has been successfully obtained in the composite fibers prepared at the high draw ratio and the related formation mechanism is discussed based on the results of morphological observations and 2d-SAXS patterns. Large improvement in tensile strength and modulus has been realized at the high draw ratio due to the enhanced orientation and dispersion of SWCNT bundles as well as the formation of NHSK.  相似文献   

11.
The effect of drying method on selected material properties of nanocellulose was investigated. Samples of nanofibrillated cellulose (NFC) and cellulose nanocrystals (CNC) were each subjected to four separate drying methods: air-drying, freeze-drying, spray-drying, and supercritical-drying. The thermal stability and crystallinity of the dried nanocellulose were evaluated using thermogravimetric analysis (TGA) and X-ray diffraction. Supercritical-drying produced NFCs with the least thermal stability and the lowest crystallinity index. Air-drying or spray-drying produced NFCs which were more thermally stable compared with freeze-dried NFCs. The CNCs dried by the three methods (air-drying, freeze-drying, and spray-drying) have similar onset temperature of thermal degradation. The different drying methods resulted in various char weight percentages at 600 °C for the dried NFCs or CNCs from TGA measurements. The dried NFCs are pure cellulose I while the dried CNCs consist of cellulose I and II. The calculated crystallinity indices differ with each drying method. The cellulose II content in CNCs changes as a function of drying method. For the application of nanocellulose in non polar thermoplastics, spray-dried products are recommended according to their higher thermal stability and higher crystallinity index.  相似文献   

12.
The morphological structure and crystallization behavior of in situ poly(ethylene terephthalate) (PET)/isotactic polypropylene (iPP) microparts prepared through micro‐injection molding are investigated using a polarized light microscope, differential scanning calorimeter, scanning electron microscope, and two‐dimensional wide‐angle X‐ray. Results indicate that both the shear effect and addition of PET fibers greatly influence the morphologies of the iPP matrix. Typical “skin‐core” and oriented crystalline structures (shish‐kebab) may simultaneously be observed in neat iPP and iPP/PET microparts. The presence of PET phases reveals significant nucleation ability for iPP crystallization. High concentrations of PET phases, especially long PET fibers, correspond to rapid crystallization of the iPP matrix. The occurrence of PET microfibrils decreases the content and size of β‐crystals; by contrast, the orientation degree of β‐crystals increases with increasing PET content in the microparts. This result suggests that the existence of the microfibrillar network can retain the ordered clusters and promote the development of oriented crystalline structures to some extent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A series of biodegradable cellulose/chitin blend membranes were successfully prepared from blend solution of cellulose and chitin in 9.5 wt% NaOH/4.5 wt% thiourea aqueous solution coagulating with 5.0 wt% (NH4)2SO4. The influence of chitin content on the morphology and structure of the membranes was studied by scanning electron microscopy, environmental scanning electron microscopy and wide-angle X-ray diffractometry, as well as Fourier transform infrared spectroscopy. Using double-cell method and solution depletion method, the permeability and partition coefficients of three model drugs (ceftazidine, cefazolin sodium, and thiourea) were determined in phosphate buffer solution to clarify the diffusion mechanism governing transport of solutes in these membranes. Diffusion coefficients were calculated from the permeability and partition coefficients in terms of Fick's law. The effects of the chitin content, pH, ionic strength, molecular size and temperature on the drug diffusion were also studied. Our results revealed that all of the membranes had a porous-like structure. The introduction of chitin exhibited great influence on the morphology and crystal structure of the blend membranes, resulting in a significant different permeability. For the first time, a dual diffusion mechanism with some hindrance of molecular diffusion via polymer obstruction was employed to explain the transport of drugs in the membranes.  相似文献   

14.
Poly(ε-caprolactone) (PCL)/cellulose nanocrystal (CNC) nanocomposites were produced via twin-screw extrusion. Microcellular nanocomposite samples were produced with microcellular injection molding using carbon dioxide (CO2) as physical blowing agent. The foaming behavior, physical properties, thermal properties, crystallization behavior, and biocompatibility were investigated. It was found that the CNCs interacted with the PCL matrix which led to a strong interface. The CNCs effectively acted as nucleation agents in microcellular injection molding. Both solid and foamed samples with higher levels of CNC content showed higher tensile moduli, complex viscosities, and storage moduli due to the reinforcement effects of CNCs. Furthermore, improvement in the foamed samples was more significant due to their fine cell structure. The addition of CNCs caused a reduction of the decomposition temperature and an increase in the glass transition temperature, crystallization temperature, and crystallinity of PCL. Moreover, the biocompatibility of the foamed nanocomposites with low CNC content was verified by 3T3 fibroblast cell culture.  相似文献   

15.
Varying the processing conditions of semicrystalline polymers can produce different morphologies of crystallization, which leads to different properties. There have been extensive studies of flow‐induced crystallization on isotactic polypropylene (iPP) using predominantly shear flow. A stretching method, deduced from extrusion, was introduced to study the morphological evolution of elongation‐induced shish‐kebab crystallization. Different morphologies of the resultant samples with different draw ratios (DRs) were carefully investigated and characterized via differential scanning calorimetry, polarizing light microscopy, scanning electron microscopy, atomic force microscopy, and 2D small‐angle X‐ray scattering. In addition, the degree of orientation of the samples with different DRs was also investigated using the 2D wide‐angle X‐ray scattering technique. The results indicate that the elongation‐induced morphology is strongly dependent on the effective stretching flow expressed in terms of the DR, which is defined as the ratio of rates between take‐up and the extrusion. The spherulite is dominant at low DRs, but it starts to deform along the stretching direction with increasing DR. The shish‐kebab structure in the stretched film, composed of stretched chains (shish) and layered crystalline lamellae (kebabs), increases gradually with an increase in the DR, whereas the spherulites gradually decreased. Furthermore, the overall orientation of α‐phase crystals, expressed by the Hermans orientation parameter, is also found to increase dramatically with the DR, and the rate of increase strongly depends on the DR. The different crystal morphologies are attributed to crystallization induced by different elongations of the stretched iPP films. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1223–1234, 2010  相似文献   

16.
To describe the characteristic crystalline structure of polyolefins, Pennings first proposed a model consisting of a combination of an extended chain crystal (a “shish”) and folded chain crystals (“kebabs”). In Pennings' model the “shish” forms first during a crystallization process under stress and then later the “kebabs” overgrow this “shish” structure epitaxially. Because we had some doubts about such a mechanism, we undertook a series of experimental studies on linear polyethylene, particularly in regard to the crystallization process from a solution under shear. Our conclusion is that the crystals grow first by a screw dislocation mechanism, like whiskers, and then later these are deformed by the shear stress to form the shish kebab structures.  相似文献   

17.
In this article, we successfully fabricated the bionanocomposites using cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) reinforced into biodegradable polylactic acid (PLA) matrix through melt‐mixing method. Due to the affinity difference between hydrophilic CNC and hydrophobic PLA, the surface modification of CNC was employed using quaternary ammonium salts (CTAB) as a surfactant. The nanocomposites were developed using different blend ratios of CNC/modified CNC (1, 2, and 3) wt% and (0.5 wt%) rGO into the polymer matrix. The morphology of CNC, q‐CNC (modified CNC), and nanocomposites were inspected by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is demonstrated from tensile tests that, the nanocomposite with 1 wt% CNC and rGO showed maximum tensile strength compared with PLA and its nanocomposites. Moreover, the nanocomposite with 1 wt% CNC and rGO was also having maximum thermal stability. From cytotoxicity evaluation, it is observed that all the nanocomposites are nontoxic and cytocompatible to HEK293 cells. In addition to this, the nanocomposite with q‐CNC showed enhanced barrier properties compared with PLA and PLA/CNC/rGO nanocomposite. The results obtained from different characterizations showed that the incorporation of surfactant onto CNC improved the dispersion in PLA but at the same time deteriorated the PLA matrix.  相似文献   

18.
In this paper, the polyketone (POK) extrusion cast film is manufactured by melt stretching method, and the evolution process of the crystal morphology and mechanical properties with the increase of melt drawing ratio (MDR) are followed. The results show that the melt stretching process produces many micro shish-kebab crystals in the POK. The length of the shish crystal and the thickness of the kebab crystal hardly increase with MDR, but the lateral length of the kebab crystal shows linear growth when MDR exceeds 40. The crystalline morphology of POK is mainly affected by melt relaxation. The molecular chain has sufficient relaxation during cooling at a low MDR (20–40). At this time, micro shish-kebab crystals are mainly randomly arranged. When MDR exceeds 40, the rapid melt stretching shortens the relaxation time of the tie chain between the neighborhood shish crystal, and the atomic force microscopy image shows a typical shish-kebab structure. This experimental result indicates that the formation of the oriented lamella structure may be related to the relaxation of the molecular chains between the micro-shish. When the length of the shish axis and the thickness of the kebab lamellae are similar, it is difficult to distinguish the two.  相似文献   

19.
Collagen is an important biomaterial because it has many applications in the biomedical sector. However, the high hydrophilicity of collagen (COL) leads to easy swelling. Thus, controlling this property is highly desirable. In this work, cellulose nanocrystals (CNCs) dispersed in glycerol (GLI) were incorporated in the matrix collagen to tailor the hydrophilicity and mechanical properties. Study of the hydrophilicity of the bio-based nanocomposite was evaluated by contact angle measurement and thermogravimetric analysis. Mechanical analyses showed that CNCs are excellent reinforcing fillers to the collagen matrix. Synchrotron small-angle X-ray scattering was employed to investigate the nanostructures of COL/GLI/CNC nanocomposites and CNC water dispersion. CNC in concentrations up to 1 wt% presents an intermediate shape between a rod and a plane with a 9.34-nm radius of gyration (R g). Bio-based nanocomposites present two different structural levels with two types of particles with very different R gs. At the intermediate power-law regime, a large-scale mass fractal aggregate is observed. In the high-power-law regime, it is observed scattering from primary particles smaller than 1 nm. As the CNC concentration increases, the original particle distorts from a rod to a plate. The cytotoxicity assay indicates that the collagen and nanocomposites did not affect the cell viability of rat calvarial cells in vitro.  相似文献   

20.
Cellulose nanocrystals (CNC) prepared from eucalyptus cellulose CNCs were modified by the reaction with methyl adipoyl chloride, CNCm, or with a mixture of acetic and sulfuric acid, CNCa. The CNC were either dispersed at 0.1 wt% in the pure solvents ethyl acetate (EA), tetrahydrofuran (THF) and dimethylformamide (DMF) or in cellulose acetate butyrate (CAB) solutions prepared in these solvents at 0.9 wt%. The colloidal behavior of these dispersions was systematically investigated using a phase separation analyzer LUMiReader®. The mechanical properties and morphological features of the films resulting from the mixtures of CAB and CNC were determined by dynamic mechanical analysis, optical microscopy and atomic force microscopy, respectively. Regardless the functional group attached to the surface of CNC, the best colloidal stability was observed for dispersions prepared in CAB/DMF solution. Higher degree of substitution of modified CNCs favored the colloidal stability in EA and THF. Composite films prepared from CAB/DMF solutions were more homogeneous and presented better mechanical performance than those prepared in CAB/EA or CAB/THF. The mechanical performance of composites and neat CAB prepared from DMF was CAB/CNCs > CAB/CNCm > CAB/CNCa > CAB, indicating that the modification weakens the percolation process, which is mediated by H bonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号