首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atomistic detailed hydration structures of poly(vinyl methyl ether)(PVME) have been investigated by molecular dynamics simulations under 300 K at various concentrations. Both radial distribution functions and the distance distributions between donors and acceptors in hydrogen bonds show that the hydrogen bonds between the polymer and water are shorter by 0.005 nm than those between water molecules. The Quasi-hydrogen bonds take only 7.2% of the van der Waals interaction pairs. It was found the hydrogen bonds are not evenly distributed along the polymer chain,and there still exists a significant amount(10%) of ether oxygen atoms that are not hydrogen bonded to water at a concentration as low as 3.3%. This shows that in polymer solutions close contacts occur not only between polymer chains but also between chain segments within the polymer,which leads to inefficient contacts between ether oxygen atoms and water molecules. Variation of the quasi-hydrogen bonds with the concentration is similar to that of hydrogen bonds,but the ratio of the repeat units forming quasi-hydrogen bonds to those forming hydrogen bonds approaches 0.2. A transition was found in the demixing enthalpy at around 30% measured by dynamic testing differential scanning calorimetry(DTDSC) for aqueous solutions of a mono-dispersed low molecular weight PVME,which can be related to the transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27%. The transition of the fractions of hydrogen bonds and quasi-hydrogen bonds at ~27% can be used to explain the demixing enthalpy transition at 30% at a molecular scale. In addition,at the concentration of 86%,each ether oxygen atom bonded with water is assigned 1.56 water molecules on average,and 'free' water molecules emerge at the concentration of around 54%.  相似文献   

2.
以对甲氧基苯酚和溴代异戊烷为原料,用脱氯化氢反应制备可溶性聚[2-甲氧基-5-(3'-甲基)丁氧基]对苯乙炔(MMB-PPV),通过核磁氢谱(1HNMR)和红外光谱(FTIR)对产物分子的结构进行表征.用能量为15keV、剂量为3.8×1015~9.6×1016ions/cm2的氮正离子(N+)对MMB-PPV薄膜进行注入改性.紫外-可见吸收光谱(UV-Vis)显示,注入离子在MMB-PPV薄膜内部引入杂质能级,破坏了分子的共轭结构.随着注入剂量增加,吸收边逐渐向长波方向移动,且分子激发态和基态间的光学带隙由2.12eV减小至1.81eV.用简并四波混频(DFWM)技术研究了离子注入MMB-PPV薄膜的三阶非线性光学性能.结果表明,未注入薄膜的三阶非线性极化率(χ(3))值为7.1×10-10esu,随着注入剂量的增加,χ(3)值逐渐增大,当注入剂量达到3.8×1016ions/cm2时,χ(3)值提高到9.3×10-9esu,继续增加注入剂量,χ(3)值开始下降,当注入剂量为9.6×1016ions/cm2时,χ(3)值降低到1.5×10-10esu.对离子注入MMB-PPV薄膜χ(3)值变化的机理进行了探讨.  相似文献   

3.
Temperature-sensitive hydrogel beads were prepared by radiation crosslinking of poly(vinyl methyl ether) PVME spheres wrapped in Ca-alginate. The obtained gel beads have diameters in the sub-millimeter or millimeter range (depending on the PVME concentration). They were characterized by sol-gel analysis, swelling measurements, and differential scanning calorimetry. The gel content g increases with increasing radiation dose D. The swelling degree Qv decreases with increasing PVME concentration cp and increasing D. In comparison to PVME bulkgels the phase-transition temperature of the synthesized PVME gel beads is a little decreased.  相似文献   

4.
For a wide range of poly(vinyl methyl ether) (PMVE) concentrations (1–16 g dm−3), in anoxic conditions, polymer-derived radicals recombine in two major pathways: (i) crosslinking and (ii) disproportionation. Both these processes proceed inter- and intramolecularly. The radiation-chemical yields and kinetics of crosslinking have been studied by pulse radiolysis with light scattering intensity detection (LSI). In the absence of oxygen, G-values of intermolecular crosslinking were determined on the basis of LSI changes versus applied dose and compared with the results obtained previously for γ-irradiated samples. It has been found that the first half-life time of intermolecular crosslinking decreases with increasing dose per pulse. Addition of small amounts of macroradical scavenger (cysteamine hydrochloride) decreases, drastically, the increase of LSI signal. On increasing the PVME concentration, intermolecular crosslinking becomes more efficient.

In the presence of oxygen, for diluted PVME solution (0.1 g dm−3), decrease of LSI signal consisting of the kinetic of a first-order reaction was observed. The rate constant of LSI decrease was found to be 1.1×103 s−1 and it was attributed to the main-chain scission.  相似文献   


5.
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

6.
The mechanical properties of radiation cross-linked poly(vinyl methyl ether) hydrogels below and above the volume phase transition (VPT) under isobar conditions were studied. The viscoelastic properties as a function of radiation dose, radiation source and polymer concentration at the state of irradiation were examined. Increased radiation doses led to higher cross-linking densities and higher moduli. Hydrogels irradiated with -rays were much harder than those obtained with electron beam irradiation at the same radiation dose. It was found that the modulus strongly increased by up to 1 order of magnitude at a temperature of the VPT of about 37 °C. In the collapsed state at temperatures well above the VPT a frequency dependence of the E() moduli in the range 0.1–22 Hz was detected, indicating viscoelastic behavior. To study the influence of solvent quality on the modulus of the hydrogels, rheological measurements were performed in water, 2-propanol and cyclohexane. A scaling exponent for the modulus according to de Gennes (G2.25) was not found. Possible reasons for deviations (G3.54) on poly(vinyl methyl ether) hydrogels were discussed in the context of deviations from ideal networks.  相似文献   

7.
The heat capacity of poly(vinyl methyl ether) (PVME) has been measured using adiabatic calorimetry and temperature‐modulated differential scanning calorimetry (TMDSC). The heat capacity of the solid and liquid states of amorphous PVME is reported from 5 to 360 K. The amorphous PVME has a glass transition at 248 K (?25 °C). Below the glass transition, the low‐temperature, experimental heat capacity of solid PVME is linked to the vibrational molecular motion. It can be approximated by a group vibration spectrum and a skeletal vibration spectrum. The skeletal vibrations were described by a general Tarasov equation with three Debye temperatures Θ1 = 647 K, Θ2 = Θ3 = 70 K, and nine skeletal modes. The calculated and experimental heat capacities agree to better than ±1.8% in the temperature range from 5 to 200 K. The experimental heat capacity of the liquid rubbery state of PVME is represented by Cp(liquid) = 72.36 + 0.136 T in J K?1 mol?1 and compared to estimated results from contributions of the same constituent groups of other polymers using the Advanced Thermal AnalysiS (ATHAS) Data Bank. The calculated solid and liquid heat capacities serve as baselines for the quantitative thermal analysis of amorphous PVME with different thermal histories. Also, knowing Cp of the solid and liquid, the integral thermodynamic functions of enthalpy, entropy, and free enthalpy of glassy and amorphous PVME are calculated with help of estimated parameters for the crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2141–2153, 2005  相似文献   

8.
Interaction of collagen and poly(vinyl pyrrolidone) in blends   总被引:1,自引:0,他引:1  
The interaction between collagen and poly(vinyl pyrrolidone) (PVP) in blends has been studied by viscometry, differential scanning calorimetry (DSC) and by Fourier transform infrared spectroscopy (FTIR). It was found that the amide A and amide I bands position in FTIR spectra of collagen were shifted after blending with PVP to higher wavenumbers. DSC measurements showed different melting temperature, glass transition temperature and enthalpy for the blends and for the single components. Viscosity measurements showed interaction between collagen and PVP also in a dilute water solution.The results have shown, that the interactions between collagen and PVP exist due to the strong interactions between the synthetic and biological component, mainly by hydrogen bonds. These interactions caused that collagen and PVP are miscible at molecular level. The blending of collagen with PVP may give the possibility of producing new materials for potential biomedical applications.  相似文献   

9.
We prepared thermoresponsive and microporous polymer hydrogels by γ-ray irradiation of aqueous solutions poly(vinyl methyl ether) (PVME) at different heating rates. Under all temperature programs, opaque and heterogeneous PVME gels formed, which swelled at temperatures below the lower critical solution temperature and shrank at temperatures above it. All of the samples contained porous and phase-separated structures. The shape and size of the gel pores varied depending on the temperature programs. Gels having a sponge-like continuous porous structure formed only when the radiation-induced crosslinking was carried out at an optimum heating rate, which we found to be 0.11–0.13°C min−1. For temperature changes between 10°C and 40°C, gels with this structure showed rapid volume transitions on a time scale of about a minute.  相似文献   

10.
This article presents thermal diffusivity (D) measurements by flash radiometry for the polymer blend of polystyrene (PS) and poly(vinyl methyl ether) (PVME) with lower critical solution temperature (LCST) phase diagram. Dependence of D on PS content measured at 100°C coincides a phase diagram determined by a cloud point measurement. D value for the blend decreases with increasing PS content and has minimum value at the PS content around 20 wt % from which D increases again with increasing PS content. If the concentration fluctuation between two components in the miscible states at the temperature close to LCST causes the remarkable phonon scattering, the composition dependence of D would resemble the phase diagram. D for the sample in the phase-separated state is larger than that for the miscible state. The larger D in the phase-separated sample would be due to the decrease of the total surface area microscopically contacted to the counter component in the phase-separated state. Dependence of D on temperature for the phase-separated sample is quite different from that of the miscible one. On an isothermal measurement of D for PS/PVME (10 : 90) at 110°C just below the cloud point, D started to increase at time above 100 min and leveled out above 250 min. Isothermal observation of sample film by a differential interference contrast microscopy showed the creation of some structure due to the nucleation and growth of interface at 225 min and it became obvious above 250 min. Thus, the increase in D at 110°C implies that D can sensitively reflect the change in microscopic structures which follows the nucleation and growth of interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1869–1876, 1997  相似文献   

11.
Miscibility of blends consisting of poly(vinyl methyl ether) (PVME) and poly(styreneco-2-vinylnaphthalene) [P(S-co-2VN)] was investigated by means of Fourier transform infrared (FT-IR) spectroscopy and thermal analysis. Copolymers containing 21, 51, and 84 wt % of styrene were synthesized by radical polymerization. Based on optical clarity and glass transition temperatures, it was shown that the miscibility in P(S-co-2VN)/PVME blends is largely affected by compositions of the copolymers as well as concentrations of the blend. From the FT-IR results, the relative intensity at 1100 cm?1 peak of COCH3 band of PVME and the position of naphthyl ring of 2VN were sensitive to the miscibility of the blends. It was observed that blends of PVME with P(S-co-2VN) of 84 wt % styrene or P(S-co-2VN) of 51 wt % styrene are miscible over the entire concentration ranges of the blends. Blends of PVME with P(S-co-2VN) containing 21 wt % of styrene are immiscible below 65 wt % PVME. In the miscible P(S-co-2VN)/PVME blends, there was observed a large shift in the naphthyl frequency at a characteristic wavelength of 748 cm?1. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Mixtures are expected to show anomalous behavior in their viscoelastic properties close to a critical point. In this study, the reheological behavior of blends of polystyrene and poly (vinyl methyl ether) below, close to, and above the phase separation temperature Ts was investigated. Rheological measurements were carried out at three different compositions in the melt. Below and far from Ts, a satisfactory superposition of the storage and loss moduli G' and G″ was observed at all temperatures and frequencies. Close to Ts deviations were observed for G' at low frequencies (the so-called terminal zone). Above Ts G″ values was still observed over the whole range of frequencies and temperatures. The deviations observed for G' near Ts can be interpreted as due to the presence of significant concentration fluctuations. Plots of log (G'/G″2) as a function of temperature were shown to be sensitive to this anomalous behavior.  相似文献   

13.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

14.
The influence of poly(ethylene glycol) (PEG) plasticiser content and molecular weight on the physicochemical properties of films cast from aqueous blends of poly(methyl vinyl ether-co-maleic acid) was investigated using thermal analysis, swelling studies, scanning electron microscopy (SEM) and attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy. FTIR spectroscopy revealed a shift of the CO peak from 1708 to 1731 cm−1, indicating that an esterification reaction had occurred upon heating, thus producing crosslinked films. Higher molecular weight PEGs (10,000 and 1000 Da, respectively), having greater chain length, producing hydrogel networks with lower crosslink densities and higher average molecular weight between two consecutive crosslinks. Accordingly, such materials exhibited higher swelling rates. Hydrogels crosslinked with a low molecular weight PEG (PEG 200) showed rigid networks with high crosslink densities and, therefore, lower swelling rates. Polymer:plasticizer ratio alteration did not yield any discernable patterns, regardless of the method of analysis. The polymer-water interaction parameter (χ) increased with increases in the crosslink density. SEM studies showed that porosity of the crosslinked films increased with increasing PEG MW, confirming what had been observed with swelling studies and thermal analysis, that the crosslink density must be decreased as the Mw of the crosslinker is increased. Hydrogels containing PMVE/MA/PEG 10,000 could be used for rapid delivery of drug, due to their low crosslink density. Moderately crosslinked PMVE/MA/PEG 1000 hydrogels or highly crosslinked PMVE/MA/PEG 200 systems could then be used in controlling the drug delivery rates. We are currently evaluating these systems, both alone and in combination, for use in sustained release drug delivery devices.  相似文献   

15.
Molecular dynamics were performed for the simulation of the uniaxial deformation of poly(vinyl phenol) under periodic boundary conditions with the Parrinello–Rahman scheme followed by relaxation under NVT conditions (constant number of atoms, volume, and temperature). Changes in the orientation of the main chain, benzene segments, and hydrogen bonds were analyzed with the second‐order Legendre polynomial, 〈P2(cos θ)〉. Conformational changes were also followed. During deformation, backbone and phenyl rings both initially orient parallel to the draw direction. After relaxation, the chain is oriented parallel to the deformation direction, and side groups orient approximately perpendicular to this direction, in agreement with experimental data reported in the literature. Orientation values are higher than experimental values, as expected from the limited relaxation time range attainable in the simulations. Deformation proceeds by changes from gauche conformers to nontrans, nongauche, and trans conformers, whereas relaxation mainly allows high‐energy nontrans, nongauche conformers to convert into lower energy trans conformers. Values of the α angle for ring and bonded O? H segments agree with those in the literature. Differences observed for free hydroxyl moieties are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1601–1625, 2002  相似文献   

16.
The Fourier transform infrared (FTIR) results are consistent with the differential scanning calorimetric results and verify the anomalous crystallization of water in 50% poly(vinyl methyl ether) aqueous solution during heating. Below about ?34 °C, the water/polymer complex was not damaged, and the water still associated with the polymer. When heating to about ?34 °C, the associated water started to free from the unpolar (methyl group) and polar‐site (ether‐oxygen group) interaction fields of polymer gradually. Then crystallization of water was induced in this system at temperatures ranging from ?34 to ?24 °C. The FTIR data also indicate that the structure of water started to change first upon forming strong H bonds among water molecules, and then the dehydration of the polymer began to proceed subsequently when the anomalous crystallization of water occurred. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2772–2779, 2002  相似文献   

17.
Pervaporation (PV) separation of water + isopropanol and water + 1,4-dioxane mixtures has been attempted using the blend membranes of poly(vinyl alcohol) (PVA) with 5 wt.% of poly(methyl methacrylate) (PMMA). These results have been compared with the plain PVA membrane. Both plain PVA and PVA/PMMA blend membranes have been crosslinked with glutaraldehyde in an acidic medium. The membranes were characterized by differential scanning calorimetry and universal testing machine. Pervaporation separation experiments have been performed at 30 °C for 10, 15, 20, 30 and 40 wt.% of feed water mixtures containing isopropanol as well as 1,4-dioxane. PVA/PMMA blend membrane has shown a selectivity of 400 for 10 wt.% of water in water + isopropanol feed, while for water + 1,4-dioxane feed mixture, membrane selectivity to water was 104 at 30 °C. For both the feed mixtures, selectivity for the blend membrane was higher than that observed for plain PVA membrane, but flux of the blend membrane was lower than that observed for the plain PVA membrane. Membranes of this study are able to remove as much as 98 wt.% of water from the feed mixtures of water + isopropanol, while 92 wt.% of water was removed from water + 1,4-dioxane feed mixtures at 30 °C. Flux of water increased for both the feed mixtures, while the selectivity decreased at higher feed water concentrations. The same trends were observed at 40 and 50 °C for 10, 15 and 20 wt.% of water mixtures containing isopropanol as well as 1,4-dioxane feed mixtures, which also covered their azeotropic composition ranges. Membrane performance was studied by calculating flux (Jp), selectivity (), pervaporation separation index (PSI) and enrichment factor (β). Permeation flux followed the Arrhenius trend over the range of temperatures investigated. It was found that by introducing a hydrophobic PMMA polymer into a hydrophilic PVA, the selectivity increased dramatically, while flux decreased compared to plain PVA, due to a loss in PVA chain relaxation.  相似文献   

18.
左敏 《高分子科学》2017,35(12):1524-1539
The variation of phase morphology, critical temperature of demixing, and molecular dynamics for polystyrene/poly(vinyl methyl ether)(PS/PVME) blends induced by hydrophilic nanosilica(A200) or hydrophobic nanosilica(R974) was investigated. With the phase separation of blend matrix, A200 migrated into PVME-rich phase due to strong interaction between A200 and PVME, while R974 moved into PS-rich phase. The thermodynamic miscibility and concentration fluctuation during phase separation of blend matrix were remarkably retarded by A200 nanoparticles due to the surface adsorption of PVME on A200, verified by the correlation length ξ near the critical region from rheological measurement and the weakened increment of reversing heat capacity(ΔC_p) during glass transition via modulated differential scanning calorimetry(MDSC). The restricted chain diffusion induced by nanosilica still occurred despite no influence of A200 and R974 on the segmental dynamics of homogenous blend matrix. The interactions between nanosilica and polymer components could restrict the terminal relaxation of blend matrix and further manipulate their phase behavior.  相似文献   

19.
Polymer blends based on sulfonated poly(ether ketone ketone) (SPEKK) as the proton-conducting component and poly(ether imide) (PEI) as the second component were considered for proton-exchange membranes (PEMs). The PEI was added to improve the mechanical stability and lower the water swelling in the fuel cell environment. Membranes were cast from solution using N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). The ternary, polymer/polymer/solvent, phase diagram was determined to provide guidance on how to control the morphology during solvent casting of blend membranes.

For blends of SPEKK (ion-exchange capacity = 2 mequiv/g) with PEI as the minority component, the morphology consisted of dispersed particles of 0.5–6 μm. Larger particles were achieved by increasing the PEI content and/or lowering the casting temperature. High-temperature annealing after solution casting did not affect the morphology of blend membranes, due to the low mobility and compatibility of the two polymers.

The possible use of SPEKK/PEI blends in PEMs is discussed in terms of existing theories of ion transport in polymers.  相似文献   


20.
Various phase behavior of blends of poly(vinyl ether)s with polyesters of two types (highly crystalline and less crystalline with different main‐chains) were examined using differential scanning calorimetry (DSC) and optical microscopy (OM). Effects of varying the main‐chain polarity of the constituent polyesters on the phase behavior of the blends were analyzed. Miscibility in PVME/polyester blends was found only in polyesters with backbone CH2/CO ratio = 3.5 to 7.0). Tg‐composition relationships for blends of PVME with highly crystalline polyesters (PBA, PHS) were found to differ significantly from those for PVME blends with less‐crystalline polyesters (PTA, PEAz). Crystallinity of highly crystalline polyester constituents in blends caused significant asymmetry in the Tg‐composition relationships, and induced positive deviation of blends' Tg above linearity; on the other hand, blends of PVME with less crystalline polyesters exhibit typical Fox or Gordon‐Taylor types of relationships. The χ parameters for the miscible blends were found to range from ?0.17 to ?0.33, reflecting generally weak interactions. Phase behavior was analyzed and compared among blends of PVME with rapidly crystallizing vs. less‐crystallizing polyesters, respectively. Effects of polyesters' crystallinity and structures on phase behavior of PVME/polyester blends are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2899–2911, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号