首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The direct electrochemistry and electrocatalysis of cytochrome c (Cyt c) based on dandelion-like bismuth sulfide (d-Bi2S3) nanoflowers have been developed. The morphologies and composition of the d-Bi2S3 were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS). Then, the electrochemical behaviors of Cyt c immobilized within the d-Bi2S3/chitosan film and its electrocatalytic ability toward hydrogen peroxide (H2O2) reduction were investigated by cyclic voltammetry. The electron transfer rate constant was estimated to be 13.1 s?1, suggesting that a fast direct electron transfer was realized. The prepared Cyt c/d-Bi2S3/chitosan nanobiocomposite-modified electrode possessed excellent electrocatalytic ability toward H2O2 reduction that showed linearity in the range from 0.5 μM to 1.56 mM with a correlation coefficient of 0.9993. The detection limit was 0.2 μM on signal-to-noise ratio of 3. In addition, the d-Bi2S3 nanoflowers may be also applied to direct electron transfer of other redox proteins.  相似文献   

2.
The present study reports the synthesis of silver nanoparticles (Ag NPs) from silver nitrate solution using leaf extracts of Commiphora caudata. The formation of Ag NPs in the colloidal solution is confirmed by UV–Vis spectroscopy analysis. The identification of biomolecules is analyzed through fourier transform infrared spectroscopy. X-ray diffraction pattern shows that an average particle size of the synthesized nanoparticles are in the range of 40–24 nm. Field emission scanning electron microscopy and transmission electron microscopy confirm the formation Ag NPs in spherical shape. The photoluminescence study of the synthesized Ag NPs interprets the influence of C caudata leaf concentrations on emission behavior. Zeta potential measurement is carried out to determine the stability of synthesized Ag NPs. GC–MS analysis revealed that the C. caudata contained 11 compounds, such as Stigmasterol (24.14 %), Hexacosanoic acid, methyl ester (15.13 %) and 2-bromophenyl morpholine-4-carboxylate (11.71 %). The antibacterial activity of Ag NPs shows that these bio capped Ag NPs have higher inhibitory action for Escherichia coli, Klebsiella pheumoniea, Micrococcus flavus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus.  相似文献   

3.
In this work; we constructed a silver ion-selective electrode based on N-(6-aminohexyl) carboxamide functionalized single-walled carbon nanotubes (NAHAFSWCN) as an ionophore. The selectivity constant of a number of cations was measured using silver ion selective electrode. Optimal pH was between 3 and 6 and the upper and lower detection limits of the designed electrode were 1.2 × 10–2 and 8 × 10–7 M. The electrode showed a Nernstian response over a silver ion concentration range of 1 × 10–6 to 1 × 10–2 M with a slope of 59.1 ± 0.5 mV/decade. The response time of the electrode was less than 18 s and its effective lifetime was 3 months. The isothermal temperature coefficient of the electrode dE°/dT was determined as 0.00011 V/grad. Thermodynamic functions such as ΔS°, ΔH° and ΔG° were obtained by calculating the thermal coefficient of the electrode.  相似文献   

4.
New biologically active silver nanocomposites based on the copolymer of lup-20(29)-ene-3,28-diol 28-O-vinylbenzoate with N-vinylpyrrolidone were prepared by the borohydride method. The formation of spherical nanoparticles with a mean diameter of 67 nm was confirmed by scanning electron microscopy. The synthesized copolymers and silver nanocomposites exhibit cytotoxic activity and show promise for the development of new materials for medical purposes.  相似文献   

5.
X-ray diffraction and thermal analyses, electron microscopy, and dynamic light scattering have been employed to study silver bromide nanoparticles obtained by the mechanochemical exchange reaction NaBr + AgNO3 + zNaNO3 = (z + 1)NaNO3 + AgBr in sodium nitrate matrix (diluent and side reaction product) at z = z1 = 8.06 and z = z2 = 4.31. AgBr nanoparticles have been obtained in the free form by dissolving the matrix in water, and their activity in the photodegradation of methylene blue dye has been studied.  相似文献   

6.
Biosynthesis of gold nanoparticles (GNPs) by flavonoids from Lilium casa blanca has been developed. Several parameters such as pH, reaction temperature, reaction time and concentration of flavonoids were explored to control the formation of the GNPs. The synthesized GNPs were characterized by UV–Vis spectroscopy, transmission electron microscopy and X-ray diffraction. Stability and catalytic activity of the synthesized GNPs were also discussed. The results showed that the synthesized GNPs were in spherical, about 2.6 nm, with a face centered cubic structure. Synthesized GNPs showed good catalytic activity in the reduction of p-nitrophenol (p-NP) to p-aminphenol (p-AP). This method for synthesis of GNPs is simple, economic, nontoxic and efficient.  相似文献   

7.
Aldehyde dehydrogenase (E.C. 1.2.1.x) can catalyze detoxification of acetaldehydes. A novel acetaldehyde dehydrogenase (istALDH) from the non-Saccharomyces yeast Issatchenkia terricola strain XJ-2 has been previously characterized. In this work, Lactococcus lactis with the NIsin Controlled Expression (NICE) System was applied to express the aldehyde dehydrogenase gene (istALDH) in order to catalyze oxidation of acetaldehyde at low pH. A recombinant L. lactis NZ3900 was obtained and applied for the detoxification of acetaldehyde as whole-cell biocatalysts. The activity of IstALDH in L. lactis NZ3900 (pNZ8148-istALDH) reached 36.4 U mL?1 when the recombinant cells were induced with 50 ng mL?1 nisin at 20 °C for 2 h. The IstALDH activity of recombinant L. lactis cells showed higher stability at 37 °C and pH 4.0 compared with the crude enzyme. L. lactis NZ3900 (pNZ8148-istALDH) could convert acetaldehyde at pH 2.0 while the crude enzyme could not. Moreover, the resting cells of L. lactis NZ3900 (pNZ8148-istALDH) showed a 2.5-fold higher activity and better stability in catalyzing oxidation of acetaldehyde at pH 2.0 compared with that of Escherichia coli expressing the IstALDH. Taken together, the L. lactis cells expressing recombinant IstALDH are potential whole-cell biocatalysts that can be applied in the detoxification of aldehydes.  相似文献   

8.
In the problem of the production silver nanoparticles, mass spectrometry allows one to identify nanoclusters as nuclei or intermediates in the synthesis of nanoparticles and to understand the mechanisms of their formation. Using low-temperature secondary emission mass spectrometry, we determined the cluster composition of a system formed in the microwave treatment of a solution of AgNO3 in ethylene glycol (M). Along with silver ion–ethylene glycol associates М m ? Ag+ (m = 1–5) and small silver clusters AgM n + (n = 1–9), unusual silver clusters with one hydrogen atom [Ag n H]+ (n = 2, 4) were observed. Possible pathways for the formation of silver nanoparticles taking into account hydrogen-containing cluster intermediates are discussed.  相似文献   

9.
In this study, silver nanoparticles (AgNPs) were biosynthesized using Stachys lavandulifolia and Lathyrus sp. The first sign of the reduction of silver ions to AgNPs was the change in color of S. lavandulifolia and Lathyrus sp. extracts changed into dark brown and auburn after treating with silver nitrate, respectively. The UV–Vis spectroscopy of reaction mixture (extract+silver nitrate) produced by S. lavandulifolia and Lathyrus sp. showed the strong adsorption peaks at ?440 and 420 nm, respectively. The transmission electron microscope images showed the synthesis of AgNPs using S. lavandulifolia and Lathyrus sp. with an average size of 7 and 11 nm, respectively. The result of X-ray diffraction pattern showed four diffraction peaks at 38°, 44°, 64°, and 77° for both types of biosynthesized AgNPs. Fourier transform infrared spectroscopy showed the possible role of involved proteins and polyhydroxyl functional groups in the synthesis process of AgNPs. Inductively coupled plasma analysis determined the conversion rate (percentage) of silver ions to silver nanoparticles in reaction mixtures of S. lavandulifolia and Lathyrus sp. 99.73 and 99.67 %, respectively. In addition, antifungal effect of AgNPs, synthesized by both extracts, was studied separately on mycelial growth of Dothiorella sarmentorum, in a completely randomized design on potato dextrose agar (PDA) medium. The inhibition rate of mycelial growth was strongly depended on the density of AgNPs and it strongly increased with increasing the density of AgNPs in the PDA medium. AgNPs more than 90 % of them inhibited from the mycelia growth of the fungus at the concentration of 40 µg/mL and higher.  相似文献   

10.
The use..... of aqueous leaf extract of Lavandula × intermedia for biosynthesis of silver nanoparticles (AgNPs) is presented. The plant extract was obtained by boiling dried leaves and using the obtained filtrate for the synthesis of AgNPs. The study was conducted to investigate an ecofriendly approach to metal nanoparticle synthesis and to evaluate the antimicrobial potential of both the aqueous plant extract and resulting silver nanoparticles against different microbes using the disc diffusion method. The synthesis of silver nanoparticles was monitored using ultraviolet–visible (UV–v is) spectroscopy, which showed a localized surface plasmon resonance band at 411 nm and a shift of the band to higher wavenumber of 422 nm after 90 min of reaction. Powder X-ray diffraction analysis and transmission electron microscopy of the obtained AgNPs revealed their crystalline nature, with average size of 12.6 nm. Presence of elemental silver was further confirmed by energy-dispersive X-ray spectroscopy. Fourier-transform infrared spectroscopy confirmed presence of phytochemicals from Lavandula × intermedia leaf extract on the AgNPs. The AgNPs showed good antimicrobial activity with inhibition zone ranging from 10 to 23 mm; the largest inhibition zone (23 mm) occurred against Escherichia coli. Generally, the AgNPs displayed more antimicrobial activity against all investigated pathogens compared with Lavandula × intermedia leaf extract, and were also more active than streptomycin against Klebsiella oxytoca and E. coli at the same concentration. The silver nanoparticles showed prominent antimicrobial activity with a lowest minimum inhibitory concentration (MIC) value of 15 μg/mL against E. coli, K. oxytoca, and Candida albicans.  相似文献   

11.
Plasma activated water (PAW) generated by atmospheric-pressure air microplasma arrays is a solution containing a variety of reactive species. Here we investigate the effects of different applied voltage and water-activated time on bactericidal activities against Shewanella putrefaciens (S. putrefaciens). Our measurements showed that the sterilization efficiency of S. putrefaciens by PAW could be up to 2.0 Log Reduction. Scanning electron microscopy image and DNA concentration measurement showed that the S. putrefaciens cells were damaged and deformed due to the PAW treatment. The physicochemical properties of PAW treated by different applied voltage and water-activated time were evaluated, including pH value, initial PAW temperature, and the concentrations of plasma-activated species, such as H2O2, NO 3 ? , NO 2 ? , and O3. Analysis indicates that the sterilization efficiency of S. putrefaciens treated by PAW was mainly determined by H2O2 concentration and pH value of PAW. This study provides a basis for the PAW potential applications in the disinfection of rotten food.  相似文献   

12.
Negative ion mass spectra for a series of organophosphorus compounds were obtained and negative ion fragmentation processes were treated theoretically. Using O-isopropyl and O-pinacolyl methylphosphonofluoridates as examples, electron affinities of molecules and their fragments were estimated using the UB3LYP/6-311+G(d,p) quantum-chemical approach and energetically more favorable and characteristic routes of dissociative electron attachment, including simple bond cleavage and rearrangements, were determined. Based on the obtained experimental and theoretical data, hypothetic fragmentation patterns were proposed and a special algorithm was compiled to predict negative ion mass spectra for some groups of organophosphorus compounds, such as О-alkyl methylphosphonofluoridates, О,О-alkyl phosphonodichloridates, and О,О′-dialkyl phosphonochloridates. The simulated mass spectra showed a good agreement with the experimental ones, confirming reasonable reliability of the proposed algorithm.  相似文献   

13.
In this work, a facile biogenic route for the synthesis of silver nanoparticles (AgNPs) is reported. The aqueous extract of Areca catechu (A. catechu) nuts are used as reducing source. The synthesized AgNPs characterized by UV–Visible (UV–Vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectrum (EDS) analysis. The formations of AgNPs are identified from the appearance of yellow color and the surface plasmon resonance absorbance peak between 407 and 437 nm. The FT-IR results exposed that the active biomolecules of A. catechu are responsible for capping of AgNPs. The synthesized AgNPs are distorted spherical shape with 45 nm of size, identified from the HR-TEM. In application, the electrocatalytic activity of AgNPs is analyzed towards glucose oxidation using cyclic voltammetry. The results showed that A. catechu derived AgNPs act as good electrocatalyst than bare bulk silver and glassy carbon electrodes.  相似文献   

14.
The voltammetry of microparticles (VMP) methodology was used to characterize the biological attack of different bacteria and fungi to reconstructed egg tempera and egg–linseed oil emulsion paint films containing cadmium yellow (CdS), which mimic historical painting techniques. When these paint films are in contact with aqueous acetate buffer, different cathodic signals are observed. As a result of the crossing of VMP data with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electrochemical microscopy (SECM), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM), these voltammetric signals can be associated with the reduction of CdS and different complexes associated to the proteinaceous and fatty acid fractions of the binders. After biological attack with different fungi (Acremonium chrysogenum, Aspergillus niger, Mucor rouxii, Penicillium chrysogenum, and Trichoderma pseudokoningii) and bacteria (Arthrobacter oxydans, Bacillus amyloliquefaciens, and Streptomyces cellulofans), the observed electrochemical signals experience specific modifications depending on the binder and the biological agent, allowing for an electrochemical monitoring of biological attack.  相似文献   

15.
张杰 《高分子科学》2016,34(8):1001-1013
In this article, crystalline morphology and molecular orientation of isotactic polypropylene (iPP), random copolymerized polypropylene (co-PP) and β-nucleating agent (β-NA) composites prepared by pressure vibration injection molding (PVIM) have been investigated via polarized light microscopy, scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry. Results demonstrated that the interaction between co-PP and iPP molecular chains was beneficial for the mechanical improvement and the introduction of β-NA further improved the toughness of iPP. In addition, after applying the pressure vibration injection molding (PVIM) technology, the shear layer thickness increased remarkably and the tensile strength improved consequently. Thus, the strength and toughness of iPP/co-PP/β-NA composites prepared by PVIM were simultaneously improved compared to those of the pure iPP prepared by conventional injection molding (CIM): the impact toughness was increased by five times and tensile strength was increased by 9 MPa. This work provided a new method to further enhance the properties of iPP/co-PP composites through dynamic processing strategy.  相似文献   

16.
It has been found that halide ions (Cl, Br, and I) in aqueous solution initiate structural transformation of silver trigonal prisms (20?50 nm in size) in the sequence prism ? disc ? sphere. It has been demonstrated that the change in structure is caused by the formation of poorly soluble silver salts on nanoprisms and occurs by the electrochemical mechanism. The efficiency of the process is dictated by the nature of the halide ion.  相似文献   

17.
Phase formation in the A1 + x Al x Ti2 ? x P3O12 (A = Li, Na, K, Rb, or Cs; 0 ≤ x ≤ 2.0) and B0.5(l + x)Al x Ti2 ? x P3O12 (B = Mg, Ca, Sr, or Ba; 0 ≤ x ≤ 2.0) systems was studied using X-ray powder diffraction, electron probe microanalysis, and IR spectroscopy. The following double and triple orthophosphates were found to exist: A1 + x Al x Ti2 ? x (PO4)3 with A = Li (0 ≤ x ≤ 0.3), Na (0 ≤ x ≤ 1.0), K (x = 0, 1.0, or 2.0), Rb (x = 0, 1.0, or 2.0), or Cs (0 ≤ x ≤ 1.0) and B0.5(l + x)Al x Ti2 ? x (PO4)3 with B = Mg and Ba (x = 0), Ca and Sr (0 ≤ x ≤ 0.2). These orthophosphates crystallize in the structure types of kosnarite, langbeinite, cesium titanium arsenate, potassium aluminum phosphate, or rubidium aluminum phosphate. Their crystal parameters were calculated. For CsTi2(PO4)3 (x = 0), Rietveld refinement was carried out: space group Ia \(\bar 3\) d, Z = 32, a = 19.909(5) Å, V = 7892(1) Å3. This compound has a framework structure. The framework is built of TiO6 octahedra and PO4 tetrahedra; eight- and 12-coordinated Cs+ cations populate interstices.  相似文献   

18.
Nanosilica-bonded N-(propylsulfonyl) piperazine-N-sulfamic acid was easily prepared by functionalizing silica nanoparticles and characterized by thermogravimetric analysis, scanning electron microscopy, infrared (IR) spectroscopy, elemental analyses, and ion-exchange pH analysis. The catalytic activity of the functionalized nanosilica for preparation of 1,1′-(arylmethylene) diureas from reaction of aldehydes with urea derivatives was examined. The efficient effect of this catalyst led to preparation of 1,1′-(arylmethylene) diureas in high yield. The reaction of aldehydes with thiourea under the same reaction conditions afforded high yield of 1,3,5-triazinane-2,4-dithiones. Catalyst reusability, simple workup procedure, and short reaction time are other advantages of this protocol.  相似文献   

19.
The crystal lattice period of the Pb1 ? x Ag x Te solid solutions is studied as a function of the silver content. The a parameter is found to decrease sharply with an increase in the dopant concentration. The solubility of silver in PbTe corresponds to x = 0.007. A possible mechanism of silver dopant incorporation into the PbTe lattice is considered on the basis of the quantitative interpretation of the obtained data.  相似文献   

20.
Silver(I) N-heterocyclic carbene complexes were synthesized in good yields by the reactions of 1,3-dialkylperhydrobenzimidazolium salts with silver(I) oxide in dichloromethane. The silver complexes were used as carbene-transfer agents to synthesize palladium(II) N-heterocyclic carbene complexes. All of the complexes were characterized by physicochemical and spectroscopic methods. The new palladium complexes were tested as catalysts in the direct C5 arylation of 2-n-butylfuran, 2-n-butylthiophene and 2-n-propylthiazole with aryl bromides at 130 °C in N,N-dimethylacetamide. The arylation reactions proceeded selectively at the C5 position of the heteroaromatic compounds, and the corresponding coupling products were obtained in moderate to good yields by using 0.5 mol% of the palladium complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号