首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has been found that ultrasonic irradiation of graphite in N-methylpyrrolidone is accompanied by the formation of polymer nanoparticles. These particles form aggregates with n-layered graphene particles, the formation of which prevents graphene particles from precipitation during centrifugation.  相似文献   

2.
Graphene has drawn an astounding research interest in recent years, owing to its exceptional properties. The scaled-up and trustworthy production of graphene derivatives, such as graphene oxide (GO) and thermally reduced graphene oxide (TRGO), offer wide variety of possibilities to synthesize graphene-based polymer materials for various applications. In the present work, poly(vinyl alcohol-g-acrylic acid) films were prepared by grafting polyacrylic acid chains onto polyvinyl alcohol backbone employing a free radical polymerization system in the presence of crosslinking agent, N,N′-methylenebisacrylamide (MBA). The graphene was homogeneously dispersed into the prepared polymer using thermal mechanical agitation technique. The so prepared nanocomposites were undertaken for structural and morphological characterization using FTIR, SEM, XRD, Raman Spectroscopy, DLS, Zetasizer and AFM analysis, respectively. The electrical conductive and mechanical properties of prepared nanocomposite films were also investigated.  相似文献   

3.
Chemical doping of CVD grown graphene by introducing PTSA (n-type) and NBD (p-type) dopants is explored. This type of doping is key building block for photovoltaic and optoelectronic devices. Doped graphene samples display (1) high transmittance in the visible and near-infrared spectrum and (2) tunable graphene sheet resistance and work function. Large area and uniform graphene films were produced by chemical vapor deposition on copper foils and transferred onto quartz as transparent substrates. For n doping, a solution of p-toluenesulfonic acid (PTSA) was first dropped and spin-coated on the graphene/quartz and then annealed at 100°C for 10 min to make graphene uniformly n-type. Subsequently, a bare graphene was transferred on another quartz substrate, a solution of 4-nitrobenzenediazonium tetrafluoroborate (NBD) was dropped and spin-coated on the surface of graphene and similarly annealed. As a result, the graphene was p and n doped on the different quartz substrates. Doped graphene samples were characterized by different techniques. Experimental results suggested that doped graphene sheets with tunable electrical resistance and high optical transparency can be incorporated into photovoltaics and optoelectronics devices.  相似文献   

4.
鄢定祥 《高分子科学》2016,34(12):1490-1499
An electromagnetic interference (EMI) shielding composite based on ultrahigh molecular weight polyethylene (UHMWPE) loaded with economical graphite-carbon black (CB) hybrid fillers was prepared via a green and facile methodology, i.e., high-speed mechanical mixing combined with hot compression thus avoiding the assistance of the intensive ultrasound dispersion in volatile organic solvents. In this composite, the graphite-CB hybrid fillers were selectively distributed in the interfacial regions of UHMWPE domains resulting a typical segregated structure. Thanks to the specific morphology of segregated conductive networks along with the synergetic effect of large-sized graphite flakes and small-sized CB nanoparticles, a low filler loading of 7.7 vol% (15 wt%) yielded the graphite-CB/UHMWPE composites with a satisfactory electrical conductivity of 33.9 S/m and a superior shielding effectiveness of 40.2 dB, manifesting the comparable value of the pricey large-aspect-ratio carbon nanofillers (e.g., carbon nanotubes and graphene nanosheets) based polymer composites. More interestingly, with the addition of 15 wt% graphite-CB (1/3, W/W) hybrid fillers, the tensile strength and elongation at break of the composite reached 25.3 MPa and 126%, respectively; with a remarkable increase of 58.1% and 2420% over the conventional segregated graphite/UHMWPE composites. The mechanical reinforcement could be attributed to the favor of the small-sized CB particles in the polymer molecular diffusion between UHMWPE domains which in turn provided a stronger interfacial adhesion. This work provides a facile, green and affordable strategy to obtain the polymer composites with high electrical conductivity, efficient EMI shielding, and balanced mechanical performance.  相似文献   

5.
In this study, the graphene oxide/poly(N-isopropylacrylamide) nanocomposite modified with 2-mercaptoethanol (GO/MPNIPAM) was synthesized in three stages. N-Isopropylacrylamide polymerization was firstly performed in the presence of azobisisobutyronitrile as an initiator, which was discovered by Homer, and 2-mercaptoethanol as a modifier. Then, the graphene oxide/modified polymer nanocomposite was synthesized by the covalent interactions between carboxylic acids of the graphene oxide and hydroxyl groups of the modified polymer during the esterification reaction. The GO/MPNIPAM nanocomposite includes some percentage of the polymer that improves solubility and stability of the GO sheets in physiological applications; due to the interaction between the MPNIPAM and the modified GO polymer, a bridge-like connection is formed between the GO sheets and the process that leads to remove a large number of hydrophilic groups on the GO nanocomposite and therefore, the GO/MPNIPAM is well dissolved in organic solvents. This property is beneficial for anti-cancer drug delivery as well as π–π interactions between the nanocomposite and aromatic drugs. The nanocomposite is not a toxic material for human body at all and has high capacity for drug delivery. Structure and morphology of the nanocomposite were studied by FTIR, SEM, XRD, UV, TGA and Raman analysis. The analysis done by X-ray diffraction pattern confirmed the presence of graphene oxide in nanocomposites and improved crystalline polymer in nanocomposites.  相似文献   

6.
Isocyanate-treated graphite oxides(i GOs) were well-dispersed into the polystyrene(PS) thin films and formed a novel network structure. With control in fabrication, an i GOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by i GOs. This work demonstrated that the i GOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures(Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C above Tg, surface morphology evolution of the films was monitored by atomic force microscopy(AFM). The i GOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.  相似文献   

7.
Au/TiO2/graphene composite was synthesized by the combination of electrostatic attraction and photo-reduction method. In the composite, graphene sheets act as an adsorption site for dye molecules to provide a high concentration of dye near to the TiO2 and Au nanoparticles (NPs), and work as an excellent electron transporter to separate photoinduced e ?/h + pairs. Under UV irradiation, photogenerated electrons of TiO2 are transferred effectively to Au NPs and graphene sheets, respectively, retarding the recombination of electron–hole pairs. Under visible light irradiation, the Au NPs are photo-excited due to the surface plasmon resonance effect, and charge separation is accomplished by the interfacial electron injection from the Au NPs to the conduction band of TiO2 and then transfer further to graphene sheets. As a result, compared with pure TiO2, Au/TiO2/graphene composite exhibited much higher photocatalytic activity for degradation of methylene blue under both UV and visible light irradiation, based on the synergistic effect of Au, graphene in contact with TiO2, allowing response to the visible light, effective separation of photoinduced charges, and better adsorption of the dye molecules.  相似文献   

8.
Three p-phenylenediamine antioxidants (p-phenylenediamine-N,N,N′,N′-tetrapropionic acid tetramethyl ester, p-phenylenediamine-N,N,N′-tripropionic acid trimethyl ester, and p-phenylenediamine-N, N′-dipropionic acid dimethyl ester) were successfully synthesized via atom-economic aza-Michael addition of pphenylenediamine to methyl acrylate p-romoted by graphene oxide in water. The synthesized compounds were characterized by NMR, ESI-MS spectra, and elemental analyses. The effects of the solvent and graphene oxide on the reaction were investigated.  相似文献   

9.
The high demand for renewable energy and increased biodiesel production lead to the surplus availability of crude glycerol. Due to the above reason, the bio-based value addition of crude glycerol into various bioproducts is investigated; among them, microbial lipids are attractive. The present study was dedicated to find the optimal glycerol concentration and carbon/nitrogen (C/N) ratio to produce maximum lipid using Yarrowia lipolytica SKY7. The glycerol concentration (34.4 to168.2 g/L) and C/N ratio (25 to 150) were selected to investigate to maximize the lipid production. Initial glycerol concentration 112.5 g/L, C/N molar ratio of 100, and with 5 % v/v inoculum supplementation were found to be optimum for biomass and lipid production. Based on the above optimal parameters, lipid concentration of 43.8 % w/w with a biomass concentration of 14.8 g/L was achieved. In the case of glycerol concentration, the maximum Yp/s (0.192 g/g); Yx/s (0.43 g/g) was noted when the initial glycerol concentration was 112.5 g/L with C/N molar ratio 100 and inoculum volume 5 % v/v. The glycerol uptake was also noted to increase with the increase in glycerol concentration. At low C/N ratio, the glycerol consumption was found to be high (79.43 g/L on C/N 25) whereas the glycerol consumption was observed to decrease when the C/N ratio was raised to 150 (40.8 g/L).  相似文献   

10.
The objective of this research was to investigate the kinetics of lipid production by Yarrowia lipolytica SKY7 in the crude glycerol-supplemented media with and without the control of pH. Lipid and citric acid production were improved with the pH control condition. There was no significant difference observed in the biomass concentration with or without the pH control. In the pH-controlled experiments, the biomass and lipid concentration reached 18 and 7.78 g/L, (45.5% w/w), respectively, with lipid yield (Yp/s) of 0.179 g/g at 60 h of fermentation. The lipid production was directly correlated with growth and the process was defined as growth associated. After 60 h of fermentation, the lipid degradation was noticed in the pH-controlled reactor whereas it occurred after 84 h in the pH-uncontrolled reactor. Apart from lipid, citric acid was produced as the major extracellular product in both fermentations but the much lower concentration in uncontrolled pH. Based on the experimental results, it is evident that controlling the pH will enhance the lipid production by 15% compared to pH-uncontrolled fermentation.  相似文献   

11.
A series of new polymer donors (PT-PP, PT-2fPP and PT-4fPP) were synthesized based on alkylthiophene substituted benzodithiophene (BDT-T) and pyrido[3,4-b]pyrazine (PP) building blocks and the effects of fluorination on the polymer properties were explored. Photophysical properties, charge mobilities and morphologies of the three polymers have been intensively investigated. The results indicated that the introduction of the fluorine atom at meta-positions of phenyl substituted PP unit hardly affected their highest occupied molecular orbital (HOMO) level. More importantly, controlling the degree of side-chain fluorination in the polymers is crucial for optimizing the blend morphology. Three polymers showed different photovoltaic properties. The polymer solar cell (PSC) based on the single layer device structure of ITO/PEDOT:PSS/PT-4fPP:PC71BM (1:1, w:w)/ZrAcac/Al demonstrates a high power conversion efficiency (PCE) of 7.61% under the illumination of AM 1.5G, 100 mW cm?2, which is the highest value for PP-based PSCs.  相似文献   

12.
X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.  相似文献   

13.
The synthesis conditions of multi-walled carbon nanotubes (MWCNTs) indirectly determine their application potential through the decisive role in the characteristics of individual tubes: diameter distribution, structure and defectiveness of graphene walls, the amount of metal impurities and amorphous carbon. In the present work, we have studied the influence of the catalyst composition and synthesis conditions on the diameter distribution and the structure of nanotube walls. We have observed the influence of the particle size for MWCNT synthesis (i.e. size effect) on catalytic activity by ex situ and in situ techniques: in situ X-ray diffraction on synchrotron radiation (SRXRD), gas chromatography, and ex situ transmission electron microscopy. The data obtained by in situ SRXRD are in agreement with the results collected using laboratory tubular fix-bed catalytic reactor allowing thereby extending the applicability of the approach. For the first time we have shown the increase of the fraction of graphene walls in the total MWCNT diameter with time.  相似文献   

14.
Application of engineered bacteria expressing nitrile hydratase for the production of amide is getting tremendous attention due to the rapid development of recombinant DNA technique. This study evaluated the effect of 3-cyanopyridine concentrations on nicotinamide production using recombinant Escherichia coli strain (BAG) expressing high-molecular-mass nitrile hydratase from Rhodococcus rhodochrous J1, and established proper process of whole-cell catalysis of 3-cyanopyridine and high cell-density cultivation. The process of substrate fed-batch was applied in the production of nicotinamide, and the concentration of product reached 390 g/L under the condition of low cell-density. After the high cell-density cultivation of BAG in 5 L bioreactor, the OD600 of cell attained 200 and the total activity reached 2813 U/mL. Different high density of BAG after fermentation in the tank was used to catalyze 3-cyanopyridine, and the concentration of nicotinamide reached to 508 g/L in just 60 min. The productivity of BAG was 212% higher than that of R. rhodochrous J1, and it is possible that BAG is able to achieve industrial production of nicotinamide.  相似文献   

15.
Water-soluble graphene dispersions were fabricated by the exfoliation of graphite functionalized with furfuryl alcohol by Diels–Alder cycloaddition reaction. The pristine graphite was firstly heat-treated in N-methyl-2-pyrrolidone (NMP) before it was functionalized with furfuryl alcohol, and then, the increased interlayer spacing is propitious for furfuryl alcohol to enter into the lattice and react with graphite. High-resolution transmission electron microscopy and Raman spectroscopy indicate that the functional graphene is a high-quality product without any significant defects, and atomic force microscopy shows that the functional graphene consists of single to few layers graphene. Moreover, the grafting ratio onto graphene is up to 1.52 mmol/g. Therefore, the method provides a feasible route to produce functional graphene.  相似文献   

16.
The water-salt solutions of the graft copolymer bearing a polyimide main chain and poly(N,N-dimethylamino-2-ethyl methacrylate) side chains (M = 4.7 × 105, the density of grafting with side chains z = 0.44) are studied by static and dynamic light scattering and turbidimetry. The solutions are investigated in a tenfold range of NaCl concentrations (from 0.015 to 0.15 mol/L) at the polymer concentration from 0.002 to 0.015 g/cm3 and pH from 8 to 12. The temperature dependences of the intensity of scattered light, optical transmission, hydrodynamic radius of scattering objects, and their concentrations in solutions are derived. The temperatures of phase separation onset T 1 and end T 2 are determined. It is shown that an increase in the salt content in solution leads to reduction in the polymer solubility and in temperatures T 1 and T 2. The watersalt solutions retain all the regularities of phase-separation temperature variation observed for aqueous solutions with change in the concentration of solution and pH of a medium: the values of T 1 and T 2 increase upon dilution and growth of acidity.  相似文献   

17.
Formation of an electroactive composite based on graphene oxide and poly-o-phenylenediamine (PPD) was studied. Electron absorption spectra were used to confirm formation of a strong chemical bond at a prolonged contact of unreduced graphene oxide on a conducting support (glassy carbon, SnO2) and o-phenylenediamine monomer solution. Here, graphene oxide is partially reduced and oxidation and partial polymerization of o-phenylenediamine starts. It is shown that electrochemical oxidation of the obtained composite under the conditions of cyclic voltammetry results in the further polymerization of o-phenylenediamine bound to graphene oxide; here, reduction of graphene oxide continues, and at much lower cathodic potentials than in the absence of o-phenylenediamine. Morphology of the obtained composite was studied using the AFM technique. PPD embedded into the composite structure does not allow nanosheets of reduced graphene oxide (RGO) to corrugate and imparts the morphology of the composite the shape of globules with a clearly pronounced structure. As a result, the RGO–PPD composite was obtained that demonstrated pronounced electroactivity in a wider range of potentials than in the case of nonmodified PPD.  相似文献   

18.
Although poly(p-phenylenediamine) is an electric non-conductor, it exhibits, analogously to conducting polymers, redox activity and could, therefore, find applications in biomedicine. In the current work, the cytotoxicity of poly(p-phenylenediamine) polymer powder produced by the chemical oxidation of p-phenylenediamine with ammonium peroxydisulfate in acidic aqueous media has been studied. Primary mouse embryonic fibroblasts were used for this purpose. Interestingly, the standard methods for the determination of polymer cytotoxicity based on international standard EN ISO 10993-5 could not be applied. The reason was the interaction of polymer extracts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. On the basis of the evaluation of flow cytometry and micrographs taken by fluorescence microscopy on cells treated with extracts of poly(p-phenylenediamine), it can be concluded that the powder polymer possesses severe cytotoxicity. The results suggest that practical application of the polymer within biomedicine is, at the current state of knowledge, difficult, and modification of the preparation techniques and/or subsequent purification of poly(p-phenylenediamine) is needed.  相似文献   

19.
The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L?1) (p?<?0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.  相似文献   

20.
On the basis of analysis of published data on the reaction efficiency of various polymer materials and graphite in their interaction with fast oxygen atoms (energy of about 4.5 eV) as obtained in flight tests of materials in low-Earth orbits of the International Space Station and ground tests, probability P r of chemical oxidation reactions accompanied by ablation has been evaluated. Estimates have been made for 33 polymers consisting of carbon, hydrogen, oxygen, and nitrogen and graphite for two extreme cases when the carboncontaining oxidation products are either CO or CO2 alone. The average probability values found are P r(CO)(av) = 0.184 and P r(CO2)(av) = 0.317. The probability values range from P r(CO) = 0.604 and P r(CO2) = 0.963 for allyl diglycol carbonate to P r(CO) = 0.038 and P r(CO2) = 0.075 for pyrolytic graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号