首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谢续明 《高分子科学》2016,34(10):1261-1269
Poly(acrylamide-co-acrylic acid) nanocomposite physical (P(AAm-co-AAc)NCP) hydrogels have been prepared through the in situ free radical solution polymerization based on a “single network, dual cross-linkings” strategy. The P(AAm-co-AAc) NCP hydrogels are composed of nanobrushes of P(AAm-co-AAc) chains grafted on the surface of vinylhybrid silica nanoparticles (VSNPs). In the hydrogel system, the VSNPs act as the “analogous chemical cross-linking points” once the hydrogen bonds formed between the P(AAm-co-AAc) chains of the nanobrushes, thus leading to the fabrication of high-strength P(AAm-co-AAc) NCP hydrogels. Compared with conventional thermosensitive P(AAm-co-AAc) hydrogels, the P(AAm-co-AAc) NCP hydrogels have a broader range of phase transition temperature, which can be adjusted by altering the monomer ratio, the VSNPs concentration, the addition of urea and N,N-dimethylacrylamide (DMAAm). At the same time, the mechanical properties of the P(AAm-co-AAc) NCP hydrogels have been improved significantly by the introduction of VSNPs. Furthermore, both the phase transition and the tensile strength of the P(AAm-co-AAc) NCP hydrogels are largely influenced when Fe3+ ions are introduced as the ionic crosslinkers into the hydrogel networks.  相似文献   

2.
The three-dimensional structure of hydrogels plays a leading role in several areas of applications. The hydrogels are more and more used as systems of immobilized and controlled release of biomolecules in biotechnology and bio-pharmacy industries. To improve protein adsorption capacity in poly(acrylamide) hydrogels, maleic acid co-monomer was included into the reaction mixture during hydrogel synthesis. So, hydrogels of poly(acrylamide) and its copolymers with diprotic maleic acid were prepared by copolymerization and chemical crosslinking with N,N′-methylene bis-acrylamide. Swelling behavior in distilled water, in physiological saline and in bovine serum albumin (BSA) solutions was studied. Influence of initial BSA concentration on hydrogel swelling and BSA adsorption was investigated. The high amount of maleic acid present in the hydrogels has a significant effect on the swelling behavior and BSA adsorption. Results showed that the pH sensitivity of hydrogels resulted in the high amount of adsorbed BSA. The adsorption isotherms were described by Langmuir and Freundlich models. The thermodynamic parameter (ΔG ads 0 ) was determined for all obtained hydrogels. We demonstrated the favorable character and reversibility of the BSA adsorption process.  相似文献   

3.
Smart peptide hydrogels are of great interest for their great potential applications. Here, we report a facile approach to prepare a class of enzyme-responsive hydrogels in a scalable manner. These hydrogels self-assemble from a family of nonionic peptide amphiphiles(PAs) synthesized by sequential ring-opening polymerization(ROP) of γ-benzyl-L-glutamate N-carboxyanhydride(BLG-NCA) and L-tyrosine N-carboxyanhydride(Tyr-NCA), followed by subsequent aminolysis. These PA samples can readily form a clear hydrogel with a critical gelation concentration as low as 0.5 wt%. The incorporation of tyrosine residues offers hydrophobicity, hydrogen-bonding interaction and enzyme-responsive properties. The hydrogel-to-nanogel transition is observed under physiological conditions in the presence of horseradish peroxidase(HRP) and hydrogen peroxide(H2 O2). The obtained PA hydrogels are ideal candidates for the new generation of smart scaffolds.  相似文献   

4.
Developing a low-cost and well-recyclable adsorbent with high adsorption capacity is greatly desirable in dye wastewater treatment. Here, we demonstrate a kind of novel tough and reusable hydrogel beads with quite high capacity of dye adsorption via incorporating mussel-bioinspired poly(L-DOPA) (PDOPA) into alginate/poly(acrylamide) double network (DN) hydrogels. The synthesized PDOPA nanoaggregates were introduced into the DN hydrogels by simple one-pot mixing with the monomers prior to polymerization. The fabricated hydrogel beads exhibited high mechanical strength and good elastic recovery due to the interpenetrating Ca2+-alginate and poly(acrylamide) networks. It was shown that the beads exhibited relatively high dye adsorption capacity compared to other adsorbents reported in literature, and the introduction of PDOPA with an appropriate amount raised the adsorption capacity. It is believed that the addition of PDOPA and the matrix of double network architecture contributed synergistically to the high adsorption capacity of hydrogel beads. Moreover, the desorption of dyes could be easily realized via rinsing in acidic water and ethanol solution. The hydrogel beads remained the high adsorption capacity even after 5 times of adsorption and desorption cycles. This tough and stable hydrogel with high adsorption capacity may have potential in treatment of dye wastewater released by textile dyeing industry.  相似文献   

5.
In the reaction system of poly(N-vinylcaprolactam)-water-tetramethoxysilane, the effect of concentrations and ratios between compounds on the structure and characteristics of the formed organicinorganic hybrid hydrogels based on poly(N-vinylcaprolactam) and silica particles is studied. When the over-all concentration of precursors is increased, the number of bonds between hydrogel components increases, and an increase in the number of network crosslinks is provided by an increased fraction of tetramethoxysilane. The method of small-angle X-ray analysis is used to estimate quantitative structural characteristics of silica particles in hydrogels. Silica particles are found to form a fractal three-dimensional structure, which is composed of individual compact clusters with lateral dimensions of 40–60 Å. The average linear dimensions of scattering anisometric particles are 100 × 120 × 360 three-dimensional structure is proposed for hydrogel formed via the interaction of poly(N-vinylcaprolactam) macromolecules and silica nano-particles. The average distance between silica particles is estimated.  相似文献   

6.
The study involved preparation of poly(acrylamide-co-itaconic acid) hydrogels by radical cross-linking copolymerization. The copolymer hydrogels were characterized through infrared spectroscopy, thermal analysis, swelling measurements and in oscillatory and steady shear rheology. Results showed that more stable copolymers were formed due to the strong interaction in the hydrogels. These hydrogels have shown substantial percent swelling in water and shrinking in saline solution and acidic buffers. The rheological properties were described by the Herschel-Bulkley and power-law models to explore their non-Newtonian behavior. The results showed that higher itaconic acid content raised the polymer viscosity; the degree of shear-thinning and polymer elasticity (G′) were also increased. The transition from the viscous (G′ < G″) to the predominant viscoelastic behavior (G′ > G″) occurs at a crossover frequency ranged from 17.8 rad/s for polyacrylamide to 15.7, 12.8 and 12.5 rad/s for copolymers.  相似文献   

7.
The influence of silver myristate used as a precursor of silver nanoparticles on the direct current conductivity σ dc of epoxy polymer within the concentration range of ≤0.8 wt % was investigated. The value of direct current conductivity was determined on the basis of analysis of the frequency dependence of complex permittivity within the frequency range of 10?2–105 Hz. The temperature dependence of σ dc is composed of two regions. The dependence corresponds to the Vogel-Fulcher-Tammann empirical law σ dc = σ dc0exp{?DT 0/(T-T 0)} (where T 0 is the Vogel temperature and D is the strength parameter) at temperatures higher than the glass transition temperature T g. At the same time, T 0 does not depend on the concentration of nanoparticles. The Arrhenius temperature dependence characterized by activation energy about 1.2 eV is observed at temperatures lower than T g. The observed shape of the temperature dependence is related to the change in the mechanism of conductivity after “freezing” of ionic mobility at temperatures lower than T g. The value of σ dc is increased as the concentration of nanoparticles is raised within the temperature range of T > T g. The obtained dependence of σ dc on silver myristate concentration is similar to the root one, indicating the absence of percolation within the studied range of concentrations.  相似文献   

8.
The glucoamylase from Aspergillus niger, immobilized into poly(vinylalcohol) hydrogel lens-shaped capsules LentiKats®, was used for simultaneous saccharification and fermentation (SSF) with Zymomonas mobilis in free form. This system was stable in both the repeated batch and continuous mode of SSF. The microorganism was found to adsorb on the capsules with immobilized enzyme. This increased the ethanol productivity of the repeated batch system with 5% w/v of immobilized glucoamylase almost 2.1 times (7.2 g l?1 h?1) compared to free enzyme–free microorganism system (3.5 g l?1 h?1). The continuous SSF with the immobilized glucoamylase (11.5% w/v) tested for 15 days had productivity 10 g l?1 h?1, which is comparable to continuous experiments on semi-defined glucose medium (10 g l?1 h?1). These two systems were stable in both glucoamylase activity and microorganism productivity.  相似文献   

9.
Cuprocobaltites RBaCuCoO5 + gd(R = Nd, Sm, Gd) were prepared. Their unit cell parameters were determined, and thermal expansion, electrical conductivity (σ), and Seebeck coefficient (S) were studied in air in the range 300–1100 K. The compounds have tetragonal structures (space group P4/mmm, Z = 1). Their unit cell parameters are a = 0.3906(2) nm, c= 0.7648(7) nm for NdBaCuCoO5.21; a = 0.3904(2) nm, c = 0.7609(6) nm for SmBaCuCoO5.06; and a = 0.3891(2), c = 0.7592(6) nm for GdBaCuCoO5.02. The RBaCuCoO5 + δ cuprocobaltites at room temperature are p-type semiconductors, whose electrical conductivity and linear thermal expansion coefficient (LTEC) increase with increasing R3+ ionic radius, whereas the Seebeck coefficient decreases. The LTECs of RBaCuCoO5 + δ phases in the range 500–575 K increase by a factor of 1.2–1.5 because of the elimination of weakly bound oxygen. S = f(T) curves for RBaCuCoO5 + δ (R = Nd, Sm, Gd) feature maxima at 510 K for R = Sm and 365 K for R = Gd, probably, due to the change in the spin state of cobalt cations in these phases.  相似文献   

10.
This work is aimed at a selection of yeast strains suitable for simultaneous saccharification and fermentation of waste paper. The waste paper, as a lignocellulosic material, represents an unconventional source for the production of ethanol which is a promising alternative fuel. The yeast strains Saccharomyces cerevisiae and Pichia kudriavzevii produced the highest amounts of ethanol at 30 °C and were also resistant at 40 °C during the first 92 h of fermentation. These two strains were immobilized by entrapment into poly(vinyl alcohol) hydrogel lens-shaped particles LentiKats®. The immobilized S. cerevisiae was a better ethanol producer and retained higher metabolic activity in repeated batch fermentations than P. kudriavzevii. The immobilized S. cerevisiae was also suitable for a long-term storage, with 23% decrease in the ethanol production ability after 1-year storage of yeast cells.  相似文献   

11.
The oxygen nonstoichiometry and electrical conductivity of fluorite-type solid solutions Ce0.6?xLa0.4Pr x O2–δ (x = 0.1–0.2) were studied in the oxygen partial pressure range 10–19–0.35 atm at 1023–1223 K. It was confirmed that the Pr4+/3+ and Ce4+/3+ redox pairs, which determine the concentration of p- and n-type electron charge carriers, play the dominant roles under oxidizing and reducing conditions, respectively. The conductivity vs. charge carrier concentration dependencies in these conditions are almost linear. Increasing praseodymium content leads to a substantially higher hole conductivity and an expanded range of the oxygen nonstoichiometry variations at high oxygen partial pressures. Under reducing conditions when praseodymium cations become trivalent opposite trends are observed on doping.  相似文献   

12.
Data on the thermogravimetry, spectroscopy, and electrical charge transfer as functions of T, aH2O, and aO2 for niobates and tantalates of alkali-earth metals with structure disordering of the oxygen sublattice, which can show high-temperature proton conduction, are summarized. It is shown that in the solid solution series with decreasing x (that is, with the increasing of the oxygen vacancies concentration) the proton conductivity increase, which is caused by the increasing of both the concentration of proton defects formed in the structure (in compliance with the formula Sr6 ? 2x M 2 + 2x +5 O10(OH)2?6x and their mobility. The proton transfer dominates for the compositions with x < 0.15 at temperatures below 550°C. In the solid solutions (Ba1?y Ca y )6Nb2O11 (0.23 ≤ y ≤ 0.47) characterized by equal concentration of oxygen vacancies, with the increasing of barium content (correspondingly, with the increasing of the lattice parameter) the oxygen-ion conductivity (at aH2O = 3 × 10?5) grows monotonically, which is caused by the decreasing of the oxygen atom migration energy and increasing of their mobility. In this series, the proton conductivity (at aH2O = 2 × 10?2) increased. It was shown, by using IR-spectroscopy and the 1H NMR method, that the protons exist in the complex oxide structure mainly as energy-wise nonequivalent OH? groups: isolated, closely set, and paired, whose quantitative ratios are determined by the coordination preference of the B-sublattice elements.  相似文献   

13.
A complex [Zn(C8H7O3)2(H2O)2] (C8H8O3 is vanillin) has been synthesized and characterized by IR, elemental analysis, and X-ray diffraction single-crystal analysis. The crystals are monoclinic, space group C2/c, a = 22.236(8) Å, b = 10.594(2) Å, c = 7.8190(16) Å, α = 89.90(3)°, β = 106.87(4)°, γ = 89.99(3)°, V = 1762.6(8) Å3, Z = 4, F(000) = 832, S = 1.079, ρ c = 1.521g cm?3, R = 0.0221, R w = 0.0604, μ = 1.433 mm?1. The Zn2+ ion is six-coordinated with a distorted octahedron geometry. The complex forms a three-dimensional network through intermolecular hydrogen bonds. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal conditions by the TG and DTG methods. The kinetic equation can be expressed as dα/dt = Ae?E/RT 2(1 ? α)[1 ? ln(1 ? α)]1/2. The kinetic parameters (E, A), activation entropy ΔS , and activation free-energy ΔG were also gained.  相似文献   

14.
LnBaCuCoO5 + δ (Ln = Y, Dy) cuprocobaltites were prepared. Their unit cell parameters were determined and their thermal expansion, electrical conductivity (σ), and Seebeck coefficient (S) were studied in air in the range 300–1100 K. The compounds have tetragonal structures (space group P4/mmm). Their unit cell parameters are a = 0.3867(2) nm, c = 0.7550(7) nm, V = 112.9(2) × 10?3 nm3 for YBaCuCoO4.98; and a = 0.3872(2) nm, c = 0.7562(7) nm, V = 113.4(2) × 10?3 nm3 for DyBaCuCoO5.01. They are p-type semiconductors. The electrical conductivity of DyBaCuCoO5 + δ is slightly lower and its Seebeck coefficient is 1.5–2 times higher than the respective values for YBaCuCoO5 + δ apparently because of different electronic configurations of the rare-earth cations in LnBaCuCoO5 + δ (4d 0 for Y3+ and 4f 9 for Dy3+). Dilatometric measurements show that the LnBaCuCoO5 + δ phases in the range 300–1100 K do not experience structural phase transitions, and their linear thermal expansion coefficients (LTEC) are 14.3 × 10?6 K?1 for Ln = Y and 14.7 × 10?6 K?1 for Ln = Dy.  相似文献   

15.
Solid solutions LaNb1–x W x O4 + δ (x = 0.02–0.10, Δx = 0.02) were investigated, which crystallize in the monoclinic system (space group I2/c) at room temperature and undergo a phase transition into the tetragonal modification with increasing temperature. The stability of various modifications was analyzed by high-temperature X-ray powder diffraction analysis. The electrical conductivity of sintered samples was studied by impedance spectroscopy. Insertion of tungsten into the niobium sublattice leads to an increase in the conductivity of the solid solutions.  相似文献   

16.
The electrochemically mediated atom transfer radical polymerisation (eATRP) of n-butyl acrylate was investigated under a variety of catalyst concentrations. Poly(n-butyl acrylate)-block-polyurethane-block-poly(n-butyl acrylate) copolymers were prepared via electrochemically mediated atom transfer radical polymerisation (eATRP) using only 7 × 10?6 mole % of CuII complex. The successful chain extension and formation of penta-block copolymers confirmed the living nature of the poly(alkyl acrylates) prepared by eATRP. In this work, the tri-block and penta-block urethane-acrylate copolymers were synthesised for the first time by using tertiary bromine-terminated polyurethane macro-initiators as transitional products reacting with n-butyl acrylate, and subsequently with tert-butyl acrylate in the presence of the CuIIBr2/TPMA catalyst complex. The results of 1H NMR spectral studies support the formation of tri-block poly(n-butyl acrylate)-block-polyurethane-block-poly(n-butyl acrylate) copolymers, and penta-block poly(tert-butyl acrylate)-block-poly(n-butyl acrylate)-block-polyurethane-block-poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) copolymers.  相似文献   

17.
A method has been purposed to calculate some of the thermodynamic quantities for the thermal deformation of a smectite without using any basic thermodynamic data. The Hanç?l? (Keskin, Ankara, Turkey) bentonite containing a smectite of 88% by volume was taken as material. Thermogravimetric (TG) and differential thermal analysis (DTA) curves of the sample were obtained. Bentonite samples were heated at various temperatures between 25–900°C for the sufficient time (2 h) until to establish the thermal deformation equilibrium.Cation-exchange capacity (CEC) of heated samples was determined by using the methylene blue standard method. The CEC was used as a variable of the equilibrium. An arbitrary equilibrium constant (K a) was defined similar to chemical equilibrium constant and calculated for each temperature by using the corresponding CEC-value. The arbitrary changes in Gibbs energy (ΔG a 0 ) were calculated from K a-values. The real change in enthalpy (ΔH 0) and entropy (ΔS 0) was calculated from the slopes of the lnK vs. 1/T and ΔG vs. T plots, respectively. The real changes in Gibbs energy (ΔG 0) and real equilibrium constant (K) were calculated by using the ΔH 0 and ΔS 0 values. The results at the two different temperature intervals are summarized as below: ΔG 1 0 H 1 0 S 1 0 T=?RTlnK 1=47000?53t, (200–450°C), and ΔG 2 0 H 2 0 S 2 0 T=?RTlnK 2=132000?164T, (500–800°C).  相似文献   

18.
To correct the defects of hydrophobic association hydrogels(HA-gels), new physically and chemically cross-linked hybrid hydrophobic association hydrogels(hybrid HA-gels) were prepared by radical copolymerization of acrylamide(AM), octylphenol polyoxyethylene(n) acrylate(OPn AC, n stands for the number of ethoxy group, and is 10 and 21) and N,N′-methylenebisacrylamide(MBA). On the basis of the statistical molecular theory of rubber elastic, the Mooney-Rivlin model and using the tensile true stress(σ_true) tested at room temperature, the number of network strands per unit volume(υ_0) and the number-average molar mass of a network strand(M_c) were evaluated for hybrid HA-gels. For the hydrogels, the effect of the content of MBA and OP10 AC on their tensile mechanical properties was studied by using υ_0 and M_c; also, the effect of the compositions and temperature on their swelling behavior in distilled water was discussed in detail. In addition, hybrid HA-gels including a small quantity of MBA possessed the capabilities of secondary self-healing and remolding. In contrast with HA-gels prepared by the same compositions besides MBA, hybrid HA-gels showed good mechanical strength and long-term thermal stability in distilled water in the range of 25 to 80 °C. Furthermore, hybrid HA-gels also avoided the self-deswelling behavior of HA-gels. The results show that the application fields of HA-gels will be greatly broadened after introducing a chemical cross-linking network.  相似文献   

19.
Bacterial infections and the associated morbidity and mortality due to bacterial pathogens in wounds and medical implants have been increasing as most of current coatings cannot fulfill all the requirements including excellent intrinsically antibacterial activity, low cytotoxicity, and favorable physical properties. Herein, we present a kind of antibacterial hydrogel based on ε-poly(L-lysine) (EPL) grafted carboxymethyl chitosan (CMC-g-EPL) as the inherently antibacterial matrix and the surplus EPL as highly efficient antimicrobial agent. Such hydrogels possess tunable swelling abilities with water absorption percentages of 800%-2000% and modulus varying from 10 kPa to 100 kPa, and exhibit two-stage excellent antibacterial behavior. First, the free EPL can be released from the hydrogel network for quick and highly efficient bacteria killing with 99.99% of efficacy; second, the grafted EPL endows hydrogel matrix with prolonged intrinsically antibacterial activity, especially when most of free EPL is released from the hydrogel. Overall, we provide a new insight for preparing highly effective antibacterial hydrogels.  相似文献   

20.
Based on the features of the structure of B5H11 and other known boranes, the possibility of the existence of a new structure type—LiB9 (hexagonal, space group P63 cm, a = 0.565 nm, c = 0.504 nm, Z = 2, d = 2.49 g/cm3)—was predicted. The basal plane contains perforated deltahedral layers of boron atoms with delocalized electrons combined into a framework by fixed 3c2e bonds. Discrete, almost cylindrical channels accommodating Li+ cations are perpendicular to the layers. Thermal or electrochemical removal of part of lithium should be favorable for the appearance or buildup of the cationic conductivity with the possible intermediate formation of lithium incommensurate phase. Valence-scheme analysis of boride layers revealed low-barrier hole bipolaron conductivity within the layers and considerable hindrance to interlayer electron transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号