首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present the results of high-resolution electron energy loss experiments on (CO/O)/Ni(1 0 0) and (CO/H)/Ni(1 0 0) systems. Oxygen and hydrogen interact differently with Ni(1 0 0) surface, nevertheless, both species do not affect to a great extent the vibrational properties of CO. A phase of CO molecules weakly bonded to the surface and unaffected by coadsorbed oxygen and hydrogen, is found. Coverage of 0.5 ML of predosed oxygen chemically passivates the Ni(1 0 0) surface and inhibits any CO adsorption at room temperature. CO sites are unambiguously determined for each predosed Ni(1 0 0) surface.  相似文献   

2.
The reaction of H2S with NiO(100) has been studied by polarization-dependent surface EXAFS. The results evidence reduction of the selvedge to form a Ni raft having S in four-fold sites with a S–Ni bond length of 2.21±0.02 Å. The Ni–Ni in-plane distance is 2.77±0.09 Å, representing a 6±4% contraction compared to that in NiO(100).  相似文献   

3.
The local geometry of OH fragments adsorbed on the Ge(0 0 1)(2 × 1) surface has been examined using O 1s scanned energy mode photoelectron diffraction. These fragments were obtained by the dissociative reaction of the clean surface with H2O. The Ge–O bond length is found to be 1.76 ± 0.02 Å and the Ge–O bond angle to be 15° ± 2° relative to the surface normal. Some information about the positions of the Ge dimer atoms has also been obtained.  相似文献   

4.
The local adsorption structure of oxygen on Cu(1 0 0) has been studied using O 1s scanned-energy mode photoelectron diffraction. A detailed quantitative determination of the structure of the 0.5 ML (√2×2√2)R45°-O ordered phase confirms the missing-row character of this reconstruction and agrees well with earlier structural determinations of this phase by other methods, the adsorbed O atoms lying only approximately 0.1 Å above the outermost Cu layer. At much lower coverages, the results indicate that the O atoms adopt unreconstructed hollow sites at a significantly larger O–Cu layer spacing, but with some form of local disorder. The best fit to these data is achieved with a two-site model involving O atoms at Cu–O layer spacings of 0.41 and 0.70 Å in hollow sites; these two sites (also implied by an earlier electron-energy-loss study) are proposed to be associated with edge and centre positions in very small c(2×2) domains as seen in a recent scanning tunnelling microscopy investigation.  相似文献   

5.
I. Nakamura 《Surface science》2006,600(16):3235-3242
Reactions between NO and CO on Rh(1 1 1) surfaces were investigated using infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. NO adsorbed on the fcc, atop, and hcp sites in that order, whereas CO adsorbed initially on the atop sites and then on the hollow (fcc + hcp) sites. The results of experiments with NO exposure on CO-preadsorbed Rh(1 1 1) surfaces indicated that the adsorption of NO on the hcp sites was inhibited by preadsorption of CO on the atop sites, and NO adsorption on the atop and fcc sites was inhibited by CO preadsorbed on each type of site, which indicates that NO and CO competitively adsorbed on Rh(1 1 1). From a Rh(1 1 1) surface with coadsorbed NO and CO, N2 was produced from the dissociation of fcc-NO, and CO2 was formed by the reaction of adsorbed CO with atomic oxygen from dissociated fcc-NO. The CO2 production increased remarkably in the presence of hollow-CO. Coverage of fcc-NO and hollow-CO on Rh(1 1 1) depended on the composition ratio of the NO/CO gas mixture, and a gas mixture with NO/CO ? 1/2 was required for the co-existence of fcc-NO and hollow-CO at 273 K.  相似文献   

6.
The adsorption of atomic S on the Fe(1 1 0) surface is examined using density functional theory (DFT). Three different adsorption sites are considered, including the atop, hollow and bridge sites and the S is adsorbed at a quarter monolayer coverage in a p(2 × 2) arrangement. The hollow site is found to be the most stable, followed by the bridge and atop sites. At all three sites, S adsorption results in relatively minor surface reconstruction, with the most significant being that for the hollow site, with lateral displacements of 0.09 Å. Comparisons between S-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the S. At the hollow site, the presence of S causes an increase in the surface Fe d-orbital density of states between 4 and 5 eV. However, S adsorption has no significant effect on the structure and magnetic properties of the lower substrate layers.  相似文献   

7.
The adsorption of alkalis (Na, K) on Ni(1 1 1) and their coadsorption with CO and O were studied by high-resolution electron energy loss spectroscopy. Loss measurements of clean alkali adlayers provided the expected behaviour of the alkali-substrate vibration energy as a function of the alkali coverage. This result was achieved by eliminating any trace of CO contamination from the alkali adlayer. As a matter of fact, a significant softening of the alkali-Ni vibration energy was revealed in the alkali + CO coadsorbed phase. Moreover, alkali coadsorption with oxygen caused a weakening of the ONi bond and a strengthening of the alkaliNi bond.  相似文献   

8.
High resolution electron energy loss spectra are reported for coadsorbed hydrogen and carbon monoxide on Ni(100) and Ni(111). On neither surface was there any evidence for either C-H or O-H bonds. On Ni(111) one CO stretching frequency is observed and it does not change significantly in the presence of coadsorbed hydrogen. This is consistent with segregation of CO and H into islands. On Ni(100) the situation is much different; one frequency is observed in the absence of H(a) while three CO stretching frequencies are observed for the coadsorbed layers. These are attributed to on-top, two-fold bridged and four-fold binding of CO to the Ni(100) surface. These results demonstrate significant structure sensitivity for the organization of these coadsorbed species.  相似文献   

9.
The adsorption of SH and OH radicals on Ni(111) is treated using an ab initio embedding theory. The Ni(111) surface is modeled as a three-layer, 28-atom cluster with the Ni atoms fixed at bulk lattice sites. The Ni(111) energy surface is very flat for SH adsorption if the H tilt angle is allowed to vary. At both atop and bridge sites, the S---H axis is tilted away from the surface normal by 70°, resulting in the sulfur atom being sp3-hybridized and the adsorption energy being 59 kcal mol−1. For SH at the three-fold site, the S---H axis is normal to the surface, the sulfur is sp-hybridized, and the adsorption energy is 58 kcal mol−1. OH is preferentially adsorbed at the three-fold site. The calculated adsorption energy is 90 kcal mol−1 and the O---H axis is perpendicular to the surface. OH adsorption at the atop and bridge sites is 16 and 5 kcal mol−1 less stable than at the three-fold site, respectively. Atomic H, O and S are preferentially adsorbed at the three-fold site. The calculated adsorption energies are 62, 92 and 87 kcal mol−1, for H, O and S, respectively. The calculated adsorbate---Ni bond distances of 1.86 Å for H, 1.86 Å for O and 2.29 Å for S are in good agreement with experimental data. SH and OH bonding to the surface involves a combination of ionic and covalent contributions and substantial mixing with the Ni 3d orbitals. Dipole-moment calculations indicate strong ionic bonding for the atomic O/Ni system and ionic plus covalent character for the atomic S/Ni interactions. Adsorption of S and O at the three-fold site blocks H adsorption at the nearby surface. Moving H away from the S or O adatom reduces the repulsion. The dissociation of SHad → Sad + Had is calculated to be exothermic by 5 kcal mol−1 and OHad → Oad + Had to be endothermic by 30 kcal mol−1 for infinite separation between S, O and H.  相似文献   

10.
The adsorption sites of coadsorbed K and CO on the Rh(111) surface have been determined using high-resolution core-level spectroscopy, low-energy electron diffraction and site-resolved photoelectron diffraction. For both a (2×2)-2CO–1K and a -6CO–1K structure, we find that the CO molecules occupy threefold hollow sites and the K atoms on-top sites, contrary to the adsorption sites of K (threefold hollow site) and CO (on-top site below 0.5 monolayers) if adsorbed alone on Rh(111). Deposition of K onto a CO precovered surface is found to induce large shifts towards lower binding energy of the C and O 1s core levels (0.7 eV for C 1s and 1.5 eV for O 1s). The major part of these shifts is shown to arise from the K-induced site change of the CO molecules. This finding may be of importance in the interpretation of XPS data of related co-adsorption systems. Finally, it is suggested that the C and O 1s binding energies provide useful fingerprints of the CO adsorption site also for co-adsorption systems.  相似文献   

11.
Quantitative low energy electron diffraction has been used to determine the structure of the Ni(1 1 1)(√3×√3)R30°-Sn surface phase. The results confirm that the surface layer comprises a substitutional alloy of composition Ni2Sn as previously found by low energy ion scattering (LEIS), and also shows that there is no stacking fault at the substrate/alloy interface as has been found in (√3×√3)R30°-Sb surface alloys on Ag and Cu(1 1 1). The surface alloy layer is rumpled with the Sn atoms 0.45 ± 0.03 Å higher above the substrate than the surrounding Ni atoms. This rumpling amplitude is almost identical to that previously reported on the basis of the LEIS study. Comparison with similar results for Sn-induced surface alloy phases on Ni(1 0 0) and Ni(1 1 0) shows a clear trend to reduced rumpling with reduced surface atomic layer density, an effect which can be rationalised in terms of the different effects of valence electron charge smoothing at the surface.  相似文献   

12.
Štěpán Pick 《Surface science》2007,601(23):5571-5575
The regular CO overlayers at coverage θ = 1/3 adsorbed on the (0 0 0 1) surface of hcp Co and (1 1 1) surface of fcc Co are studied by first-principles density-functional theory with the exchange-correlation component in the PBE form. Adsorption in atop, bridge, and three-fold hcp or fcc position are considered. The adsorption energies, CO stretching frequencies, geometry, work function, and local magnetic moments are studied, and, when possible, compared with experimental or theoretical data. Particularly, we show that the recently proposed correction to adsorption energy of CO prefers correctly the atop adsorption site, whereas the remaining sites are almost degenerate in energy. The CO molecule lowers magnetization on neighbouring Co atoms, and the effect decreases with the adsorption site coordination. We show, however, that this trend is not the result of the different C-Co separation at different adsorption sites. A very small magnetic moment appears on CO that couples antiferromagnetically to Co. Most results are very similar for the Co(0 0 0 1) and Co(1 1 1) surfaces.  相似文献   

13.
Adsorption of thiophene on the (1 0 0) surfaces of Ni, Cu, and Pd has been investigated by the ab initio density functional theory method (periodic DMol3). Several parallel and perpendicular adsorption geometries are examined in detail. For Ni(1 0 0), both dissociative and molecular adsorption structures are found with small difference in energy. Thiophene adsorbs only molecularly on Cu(1 0 0) and Pd(1 0 0). The most stable molecular adsorption structures on all the surfaces are quite similar, where thiophene adsorbs on top of a 4-fold hollow with the symmetry axis rotated 45° from the metal rows. These stable structures arise from a good matching of the thiophene molecule to the metal surfaces. The calculated adsorption geometries are in reasonable agreement with XAFS experiments.  相似文献   

14.
Adsorption of CO and coadsorption of O and CO on Pt3Sn(1 1 1) was studied using periodic DFT calculations. Calculations were performed on Pt(1 1 1) by using the same set of parameters and their results were used as reference basis. The calculations showed that the most stable configuration with the minimum energy for coadsorption of CO and O is CO adsorbed atop Pt and O adsorbed on fcc Pt2Sn hollow site and that the decrease in the adsorption strength of the system at a total surface coverage of 0.5 ML is by 0.063 eV as a result of coadsorption, with respect to the adsorption of one species individually. Results show that the interaction between the adsorbed CO and O is short range on PtSn alloy, contrary to that on pure Pt, and this is mainly related to stronger Sn–O bonds compared to Pt–O bonds which eventually reduce the surface strain at the coadsorption structure. There is a pronounced effect of total surface concentration on the adsorption energy of coadsorbed species; the adsorption strength is not directly proportional to the surface coverage but is also related to the distribution of the coadsorbed species on the surface.  相似文献   

15.
O 1s scanned-energy mode photoelectron diffraction has been used to determine the local structure of molecular water on TiO2(1 1 0). The adsorption site is found to be atop five-fold coordinated surface Ti atoms, confirming the results of published total energy calculations and STM imaging. The Ti-Ow bondlength is found to be 2.21 ± 0.02 Å, much longer than Ti-O bondlengths in bulk TiO2 and for the formate (HCOO-) species adsorbed on this surface. This is consistent with relatively weak bonding, and in general agreement with total energy calculations, although all of the published calculations yield bondlengths somewhat longer than the experimental value. Structural optimisation based on the photoelectron diffraction data also provides some information on the associated substrate relaxation. In particular, the bondlength of the five-fold coordinated surface Ti atom to the O atom directly below shows the same contraction (relative to the bulk) as is found for the clean surface, reinforcing the picture of rather weak bonding of the water to this same Ti surface atom.  相似文献   

16.
The adsorption of carbon monoxide is studied on Au/Pd(1 0 0) alloys by means of reflection-absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The alloy was formed by adsorbing a four-monolayer thick gold film on a Pd(1 0 0) substrate and by heating to various temperatures to form alloys with a range of palladium coverages. The alloy was characterized using X-ray photoelectron spectroscopy and the composition of the outermost layer measured using low-energy ion scattering spectroscopy. CO adsorbs on palladium bridge sites only for palladium coverages greater than 0.5 monolayers (ML) suggesting that next-nearest neighbor sites are preferentially populated by palladium atoms. CO adsorbs on atop palladium sites and desorbs at ∼350 K corresponding to a desorption activation energy of ∼117 kJ/mol. However, at lower palladium coverages, these sites are not occupied and CO desorption states are detected 170 and 112 K corresponding to desorption activation energies of ∼53 kJ/mol and ∼35 kJ/mol, respectively, for these states. It is suggested that these states are due to a restructuring of the surface to form low-coordination gold sites that obscure the atop palladium site.  相似文献   

17.
We have used X-ray standing waves (XSW) in near normal incidence to determine the K–Fe bond length and the adsorption site of K at the saturation coverage at room temperature on the Fe(1 1 0) surface. Three different scattering geometries were used to enable the determination of the adsorption site by triangulation. From the results we conclude that the potassium atoms adsorb in a distorted hexagonal overlayer. The Fe–K distance, as determined from the measurements in the (2 2 0) Bragg reflection, is 3.4±0.2 Å. The long bridge site seems to be the preferred adsorption site for the potassium atoms in the distorted hexagonal overlayer. This geometry not only fits all the XSW data, but also explains all spots in the LEED pattern without the need to introduce multiple scattering. Comparison of the measured and simulated XSW data, based on the distorted hexagonal overlayer, enables a more accurate determination of the Fe–K bond length to 3.36±0.14 Å. This corresponds to a potassium hard sphere radius of rK=2.12±0.14 Å. This radius is among the largest reported for potassium on a metal, which is attributed to the high coverage and coordination of the K atoms in this overlayer arrangement.  相似文献   

18.
The surface structure and properties of the HfB2(0 0 0 1) (Hafnium diboride, HfB2) surface have been investigated with X-ray photoelectron spectroscopy, low energy electron diffraction (LEED), and scanning tunneling microscopy (STM). Annealing temperatures above 1900°C produce a sharp (1×1) LEED pattern, which corresponds to STM images showing flat (0 0 0 1) terraces with a very low contamination level separated by steps 3.4 Å in height, corresponding to the separation of adjacent Hf planes in the HfB2 bulk structure. For lower annealing temperatures, extra p(2×2) spots were observed with LEED, which correspond to intermediate terraces of a p(2×1) missing row structure as observed with STM.  相似文献   

19.
We have studied the adsorption of CO on Pd(2 1 0) by performing density functional theory (DFT) calculations within the generalized gradient approximation. We find a relatively small corrugation in the CO adsorption energies with the two bridge sites being energetically almost degenerate. CO is furthermore known as a strong poison in heterogeneous catalysis. We have therefore also addressed the coadsorption of CO with atomic hydrogen. There is a significant inhibition of the hydrogen adsorption due to the presence of CO which is analysed in terms of the electronic structure of the adsorbate system.  相似文献   

20.
The interactions among erbium, oxygen and silicon atoms on a Si(1 0 0)-2x1 reconstructed surface have been studied by means of X-ray photoelectron spectroscopy and Rutherford backscattering spectrometry. Erbium and oxygen were deposited at 600 °C on the Si surface and their behavior has been observed after different thermal processes. It was found that at 600 °C, the formation of a stable surface complex Er–O–Si is obtained together with Si oxidation; after an 800 °C annealing, the amount of oxygen bound to Si decreases and the remaining O atoms are mainly bonded to Er. An abrupt change was observed after 900 and 1000 °C annealings, which bury the Er atoms about 60 Å below the substrate surface. Our results give some hints to hypotise the O diffusion towards the Si bulk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号