首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
High-resolution photofragment translational spectroscopy is used in this work to measure the translational and internal energy distributions in the CD3 and iodine fragments produced from the photodissociation of CD3I at 266 and 304 nm. Channel selected detection, via resonantly enhanced multiphoton ionization, combined with one-dimensional core sampling provides detailed information about vibrational state distributions of the CD3 fragments. The vibrational state distributions of CD3 fragments in the I*(2P12) channel have a propensity of nu2 ' umbrella bending mode with a maximum at nu2 ' = 1 for 266 nm photodissociation. For I*(2P12) channel at 304 nm photodissociation, vibrational state distributions of CD3 fragment have a maximum in the vibrational ground state. For the I(2P32) channel (1Q1 <-- 3Q(0+)), nu2 ' umbrella bending vibrational distribution is measured as the predominant vibrational mode but has a much broader distribution when compared to that of the I* channel. The vibrational state distributions of the CD3 fragment produced from the perpendicular transition, i.e., 3Q1, which was determined at 304 nm photodissociation, has a maximum at nu2 ' = 1. The curve crossing possibility between the 1Q1 and 3Q(0+) adiabatic potentials is determined as 0.19 for 266 and 0.85 for 304 nm. The trend in reaction dynamics in 266 and 304 nm photodissociation of CD3I is compared with theoretical calculations. A bond dissociation energy D0(C-I) = 56.60+/-0.5 kcal/mol was derived by applying laws of energy conservation.  相似文献   

2.
The reaction times of several well-defined channels of the C-I bond rupture of methyl iodide from the A band, which involves nonadiabatic dynamics yielding ground state I(2P3/2) and spin-orbit excited I*(2P1/2) and ground and vibrationally excited CH3 fragments, have been measured by a combination of a femtosecond laser pump-probe scheme and velocity map imaging techniques using resonant detection of ground state CH3 fragments. The reaction times found for the different channels studied are directly related with the nonadiabatic nature of this multidimensional photodissociation reaction.  相似文献   

3.
张昌华  张延  张嵩  张冰 《物理化学学报》2009,25(8):1708-1712
利用离子速度影像方法结合共振增强多光子电离(REMPI)技术研究了氯碘甲烷在A带的光解机理. 从266和277 nm的I*(5p 2P1/2)和I(5p 2P3/2)离子速度影像获得了碎片的平动能分布和角度分布. I和I*的平动能分布呈单高斯型, 可用软自由基近似来解释. I和I*是在排斥的势能面上直接解离产生的. 实验得到的各向异性参数β证实分子受激发后主要产生3Q0态, 并且3Q0和1Q1态之间存在非绝热转移. 波长越短, 这种非绝热转移越强. 在235 nm附近, Cl和Cl*各向同性的离子影像说明氯原子来自于CH2ICl的二次解离过程, 即CH2ICl先解离产生CH2Cl自由基, 自由基再解离产生氯原子.  相似文献   

4.
结合共振增强多光子电离(REMPI)方案,利用离子影像技术研究了n-C3H7I和i-C3H7I分子的光解动力学.分析和比较了它们光解过程中所涉及的能量分配和解离态间的非绝热跃迁信息.它们的I(2P3/2)产物通道的内能所占百分比要大于I*(2P1/2)产物通道的.随着烷烃自由基变得更加的分支化,一方面,原子碎片(I和I*)的能量分布明显变宽,暗示了α-碳原子上的烷基具有更复杂的振转模式;另一方面,在266nm光子的泵浦下,尽管两分子3Q0邝X跃迁的谐振强度表现出很小的差别,但是,产生I*碎片的几率明显降低,从n-C3H7I的0.72降到i-C3H7I的0.46.这可以归因于在光解i-C3H7I过程中弯曲振动模式对产生I和I*的贡献要比n-C3H7I光解过程中弯曲振动模式对I和I*的贡献更明显,使得3Q0与1Q1态之间的非绝热跃迁得到增强.此外,n-C3H7I和i-C3H7I的3Q0邝X跃迁并不完全是平行跃迁,对应的跃迁偶极矩与键轴间的夹角分别约为15°和18°.  相似文献   

5.
The photodissociation dynamics of iodocyclohexane has been studied using velocity map imaging following excitation at many wavelengths within its A-band (230 ≤ λ ≤ 305 nm). This molecule exists in two conformations (axial and equatorial), and one aim of the present experiment was to explore the extent to which conformer-specific fragmentation dynamics could be distinguished. Ground (I) and spin-orbit excited (I?) state iodine atom products were monitored by 2 + 1 resonance enhanced multiphoton ionization, and total kinetic energy release (TKER) spectra and angular distributions derived from analysis of images recorded at all wavelengths studied. TKER spectra obtained at the longer excitation wavelengths show two distinct components, which can be attributed to the two conformers and the different ways in which these partition the excess energy upon C-I bond fission. Companion calculations based on a simple impulsive model suggest that dissociation of the equatorial (axial) conformer preferentially yields vibrationally (rotationally) excited cyclohexyl co-fragments. Both I and I? products are detected at the longest parent absorption wavelength (λ ~ 305 nm), and both sets of products show recoil anisotropy parameters, β > 1, implying prompt dissociation following excitation via a transition whose dipole moment is aligned parallel to the C-I bond. The quantum yield for forming I? products, Φ(I?), has been determined by time resolved infrared diode laser absorption methods to be 0.14 ± 0.02 (at λ = 248 nm) and 0.22 ± 0.05 (at λ = 266 nm). Electronic structure calculations indicate that the bulk of the A-band absorption is associated with transition to the 4A(') state, and that the (majority) I atom products arise via non-adiabatic transfer from the 4A(') potential energy surface (PES) via conical intersection(s) with one or more PESs correlating with ground state products.  相似文献   

6.
The nonadiabatic photodissociation dynamics of CH2BrCl into CH2Br + Cl or CH2Cl + Br is studied using two-dimensional wavepacket propagations on ab initio multiconfigurational MS-CASPT2 potential energy surfaces. Using a three-state diabatic model, we investigate the electronic states responsible for the two competing fragmentation channels and how the conical intersection present between the two lowest excited states affects the dissociation rate. Within this model, we find that the Br/Cl branching ratio depends on the irradiation wavelength. Predominant C-Br fragmentation occurs for wavelengths longer than 200 nm, while nonadiabatic C-Cl dissociation with a constant branching ratio of 0.4 is predicted upon absorption of photons in the range of 170-180 nm. Additionally, we observe complete nonadiabatic population transfer in less than 100 fs, that is, before the wavepacket can reach the conical intersection. As a consequence, there is no three-body CH2 + Br + Cl dissociation.  相似文献   

7.
The photodissociation dynamics of CH(3)I from 277 to 304 nm is studied with our mini-TOF photofragment translational spectrometer. A single laser beam is used for both photodissociation of CH(3)I and REMPI detection of iodine. Many resolved peaks in each photofragment translational spectrum reveal the vibrational states of the CH(3) fragment. There are some extra peaks showing the existence of the hot-band states of CH(3)I. After careful simulation with consideration of the hot-band effect, the distribution of vibrational states of the CH(3) fragment is determined. The fraction σ of photofragments produced from the hot-band CH(3)I varies from 0.07 at 277.38 nm to 0.40 at 304.02 nm in the I* channel and from 0.05 at 277.87 nm to 0.16 at 304.67 nm in the I channel . E(int)/E(avl) of photofragments from ground-state CH(3)I remains at about 0.03 in the I* channel for all four wavelengths, but E(int)/E(avl) decreases from 0.09 at 277.87 nm to 0.06 at 304.67 nm in the I channel . From the ground-state CH(3)I, the quantum yield Φ(I*) is determined to be 0.59 at 277 nm and 0.05 at 304 nm. The curve-crossing probability P(cc) from the hot-band CH(3)I is lower than that from the ground-state CH(3)I. The potential energy at the curve-crossing point is determined to be 32,740 cm(-1).  相似文献   

8.
The time-resolved photodissociation dynamics of CH(3)I in the A-band has been studied theoretically using a wave packet model including four degrees of freedom, namely the C-I dissociation coordinate, the I-CH(3) bending mode, the CH(3) umbrella mode, and the C-H symmetric stretch mode. Clocking times and final product state distributions of the different dissociation (nonadiabatic) channels yielding spin-orbit ground and excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch ν(1) and umbrella ν(2) modes) CH(3) fragments have been obtained and compared with the results of femtosecond velocity map imaging experiments. The wave packet calculations are able to reproduce with very good agreement the experimental reaction times for the CH(3)(ν(1), ν(2))+I*((2)P(1/2)) dissociation channels with ν(1) = 0 and ν(2) = 0,1,2, and also for the channel CH(3)(ν(1) = 0, ν(2) = 0)+I((2)P(3/2)). However, the model fails to predict the experimental clocking times for the CH(3)(ν(1), ν(2))+I((2)P(3/2)) channels with (ν(1), ν(2)) = (0, 1), (0, 2), and (1, 0), that is, when the CH(3) fragment produced along with spin-orbit ground state I atoms is vibrationally excited. These results are similar to those previously obtained with a three-dimensional wave packet model, whose validity is discussed in the light of the results of the four-dimensional treatment. Possible explanations for the disagreements found between theory and experiment are also discussed.  相似文献   

9.
Photodissociation dynamics of ethyl iodide in the A band has been investigated at several wavelengths between 245 and 283 nm using resonance-enhanced multiphoton ionization technique combined with velocity map ion-imaging detection. The ion images of I, I(*), and C(2)H(5) fragments are analyzed to yield corresponding speed and angular distributions. Two photodissociation channels are found: I(5p (2)P(3/2))+C(2)H(5) (hotter internal states) and I(*)(5p (2)P(1/2))+C(2)H(5) (colder). In addition, a competitive ionization dissociation channel, C(2)H(5)I(+)+h nu-->C(2)H(5)+I(+), appears at the wavelengths <266 nm. The I/I(*) branching of the dissociation channels may be obtained directly from the C(2)H(5) (+) images, yielding the quantum yield of I(*) about 0.63-0.76, comparable to the case of CH(3)I. Anisotropy parameters (beta) determined for the I(*) channel remain at 1.9+/-0.1 over the wavelength range studied, indicating that the I(*) production should originate from the (3)Q(0) state. In contrast, the beta(I) values become smaller above 266 nm, comprising two components, direct excitation of (3)Q(1) and nonadiabatic transition between the (3)Q(0) and (1)Q(1) states. The curve crossing probabilities are determined to be 0.24-0.36, increasing with the wavelength. A heavier branched ethyl group does not significantly enhance the I(5p (2)P(3/2)) production from the nonadiabatic contribution, as compared to the case of CH(3)I.  相似文献   

10.
The effect of the excitation energy on the nonadiabatic photodissociation dynamics of (HI)2 is explored in this work. A wave packet model is applied that simulates the photodissociation process starting from the I*-HI complex left behind after dissociation of the first HI moiety within (HI)2. The probability and product fragment state distributions of the different photodissociation pathways are analyzed in a wide range of excitation energies of the I*-HI absorption spectrum. It is found that the probability of electronically nonadiabatic transitions increases substantially (by a factor larger than two) in the range of excitation energies analyzed. This increase is due to an enhancement of the intensity of the spin-rotation coupling responsible for the nonadiabatic transitions with increasing excitation energy. A remarkably high fraction of bound, highly excited I2 photoproducts, slowly decreasing as the excitation energy increases, is also found over the range of energies studied. The I2 product state distributions show manifestations of rotational interference effects and also of rotational cooling in the case of the I2 state distributions produced upon nonadiabatic transitions. Such effects become more pronounced with increasing energy. Experimental implications of these findings are discussed.  相似文献   

11.
离子速度成像方法研究碘代正戊烷的紫外光解动力学   总被引:2,自引:0,他引:2  
利用离子速度成像方法对n-C5H11I分子在266和277 nm下的光解动力学进行了研究. 实验分析了I*(5p 2P1/2)和I(5p 2P3/2)的离子影像, 得到其相应速度、角度分布和相对量子产率, 并根据相对量子产率和角度分布计算了不同解离通道的比例. 实验发现n-C5H11I的3Q0和1Q1态之间存在较强的耦合效应, 并且随着波长的减小, 这种非绝热耦合作用有递增的趋势. 由离子影像(I*和I)的角度分布结果发现, 在同一解离激光波长下I*的各向异性参数β值比I的β值小, 其中I*主要由3Q0直接解离产生, 而I绝大多数是由分子先跃迁到3Q0再经过3Q0→1Q1的非绝热耦合产生.  相似文献   

12.
The photodissociation dynamics of propyl iodides n-C3H7I and i-C3H7I near 280 and 304 nm has been investigated with our mini-TOF photofragment translational spectrometer. When a single laser is applied for both the photodissociation of parent molecules and the REMPI of I atom photofragments, the TOF spectra of photofragments I*(2P1/2) and I (2P3/2) are obtained at four different wavelengths for these two iodides. For n-C3H7I, some small vibrational peaks are partially resolved (with separation of approximately 522 cm-1, corresponding to the RCH2 deformation frequency of the fragment n-C3H7) at 281.73, 279.71, and 304.67 nm. These results show that the RCH2 deformation is mostly excited. For i-C3H7I, we obtain some partially resolved vibrational peaks (with separation of approximately 352 cm-1, corresponding to the HC(CH3)2 out-of-plane bending frequency of the fragment i-C3H7) at 281.73 nm only. For n-C3H7I, the partitioning values of the available energy Eint/Eavl are 0.48 at 281.73 nm and 0.49 at 304.02 nm for the I* channel, and 0.52 at both 279.71 and 304.67 nm for the I channel. These energy partitioning values are comparable with the previous results at different wavelengths in the literature. For i-C3H7I, the Eint/Eavl values are 0.61 at 281.73 nm, 0.65 at 304.02 nm for the I* channel, and 0.62 at 279.71 nm, 0.49 at 304.67 nm for the I channel. The potential-energy-surface crossing and the beta values have also been discussed.  相似文献   

13.
Three/two-photon resonant multiphoton ionization (MPI) of the CH3I monomer has been studied in the gas phase at 532 and 355 nm using time-of-flight mass spectrometry. Under low laser intensity (approximately 10(9) W/cm2) the mass spectra showed peaks at m/z 15, 127 and 142, corresponding to [CH3]+, [I]+ and [CH3I]+ species, at both these wavelengths. The laser power dependence for [CH3I]+, [I]+ and [CH3]+ ions showed a three-photon dependence at 532 nm. For the same three ions, photoionization studies at 355 nm gave a power dependence of 2. Both these results suggest that a vibronic energy level at approximately 7 eV, lying in the Rydberg C state, acts as a resonant intermediate level in ionization of CH3I. In the case of 355 nm, with increasing intensity additional peaks at m/z 139 and 141 were observed which could be assigned to [CI]+ and [CH2I]+ fragments. In contrast, for high intensity radiation at 532 nm ( approximately 2 x 10(10) W/cm2), only the [CI]+ fragment was observed. At these wavelengths, fragment ions observed in mass spectra mainly arise from photodissociation of the parent ion. Experiments at another wavelength in the visible region (564.2 nm) confirmed the results obtained at 532 nm. In order to assess the role of the A state in these MPI experiments, additional experiments were performed at 266 and 282.1 nm, which access the A state directly via a one-photon transition, and showed absence of a surviving precursor ion. Reaction energies for various possible dissociation channels of CH3I/[CH3I]+/[CH2I]+ were calculated theoretically at the MP2 level using the GAMESS electronic structure program.  相似文献   

14.
The nonadiabatic photodissociation dynamics of (HI)2 is simulated by applying a wave packet approach which starts from the I*-HI complex (where I* denotes the I(2P1/2) excited electronic state) produced after the photodissociation of the first HI moiety within (HI)2. In the model, two excited electronic potential surfaces corresponding to I*-HI(A 1Pi1) and I-HI(A 1Pi1), which interact through spin-rotation coupling, are considered. The simulations show that upon photodissociation of HI within I*-HI, the dissociating H fragment undergoes intracluster collisions with the I* atom. Some of these collisional events induce an electronically nonadiabatic transition which causes the deactivation of I* to the I ground electronic state. The probability of such nonadiabatic process is found to be 0.37%. Most of the photodissociation process takes place in the upper excited electronic surface [that of the I*-HI(A 1Pi1) complex], where H dissociation is found to be mainly direct or involving weak H/I* intracluster collisions. These weak collisions with high collisional angular momentum, and therefore high collisional impact parameters associated, are responsible for most of the probability of nonadiabatic transitions found. The type of H/I* collisions leading to nonadiabatic transitions appears to be closely related to the nature of the spin-rotation coupling between the two excited electronic states involved.  相似文献   

15.
16.
Angular and energy distributions of photofragments from Mg+-XCH3 (X=F, Cl, Br, and I) were deduced from time-of-flight (TOF) profiles measured by rotating the polarization direction of the dissociation laser with respect to ion beam direction. The TOF profiles of ICH3+ and MgI+ fragment ions produced from Mg+-ICH3 complex with 266 and 355 nm photons showed clear but opposite recoil anisotropy to each other. In addition, BrCH3+ formed by a dissociation of the Mg+-BrCH3 complex at a photolysis wavelength of 266 nm also showed an anisotropic distribution in the TOF profile which had the same behavior as the profile of ICH3+. For Mg+-FCH3 complex, CH3+ and MgF+ formed with a 266 nm photon had also spatial anisotropy, in which the TOF profile of MgF+ was almost opposite to that of MgI+. These anisotropic distributions were explained by (1) local excitation on the Mg+ ion, (2) rapid dissociation compared with a rotational period of the parent complex, and (3) geometrical structures of the parent complexes. Anisotropy beta parameter values were determined to be +1.30(ICH3+), -0.50(MgI+), +0.74(BrCH3+), and +0.75(CH3+ and MgF+). This dependence on the halogen atom observed in beta values was qualitatively explained by both the geometrical parameters and classical rotational periods of parent complexes. In the product energy distribution, 46%, 40%, 21%, 16%, and 16% of available energies were found to be transferred into translational energies of ICH3+, MgI+, BrCH3 +, CH3+, and MgF+, respectively. These values were compared with energy distributions estimated by a statistical prior distribution and a nonstatistical impulsive model. For ICH3+ and MgI+, the translational energies determined from the measurement had values between those estimated from statistical and nonstatistical models. On the other hand, the energy partitioning for the product ions of BrCH3+, CH3+, and MgF+ was found to be almost statistical. From these considerations, we concluded that nonstatistical processes were more important in the dissociation of Mg+-ICH3 than in other systems.  相似文献   

17.
The gas phase ion-molecule reactions of silver cluster cations (Ag(n)(+)) and silver hydride cluster cations (Ag(m)H(+)) with 2-iodoethanol have been examined using multistage mass spectrometry experiments in a quadrupole ion trap mass spectrometer. These clusters exhibit size selective reactivity: Ag(2)H(+), Ag(3)(+), and Ag(4)H(+) undergo sequential ligand addition only, while Ag(5)(+) and Ag(6)H(+) also promote both C-I and C-OH bond activation of 2-iodoethanol. Collision induced dissociation (CID) of Ag(5)HIO(+), the product of C-I and C-OH bond activation by Ag(5)(+), yielded Ag(4)OH(+), Ag(4)I(+) and Ag(3)(+), consistent with a structure containing AgI and AgOH moieties. Ag(6)H(+) promotes both C-I and C-OH bond activation of 2-iodoethanol to yield the metathesis product Ag(6)I(+) as well as Ag(6)H(2)IO(+). The metathesis product Ag(6)I(+) also promotes C-I and C-OH bond activation.DFT calculations were carried out to gain insights into the reaction of Ag(5)(+) with ICH(2)CH(2)OH by calculating possible structures and their energies for the following species: (i) initial adducts of Ag(5)(+) and ICH(2)CH(2)OH, (ii) the subsequent Ag(5)HIO(+) product, (iii) CID products of Ag(5)HIO(+). Potential adducts were probed by allowing ICH(2)CH(2)OH to bind in different ways (monodentate through I, monodentate through OH, bidentate) at different sites for two isomers of Ag(5)(+): the global minimum "bowtie" structure, 1, and the higher energy trigonal bipyramidal isomer, 2. The following structural trends emerged: (i) ICH(2)CH(2)OH binds in a monodentate fashion to the silver core with little distortion, (ii) ICH(2)CH(2)OH binds to 1 in a bidentate fashion with some distortion to the silver core, and (iii) ICH(2)CH(2)OH binds to 2 and results in a significant distortion or rearrangement of the silver core. The DFT calculated minimum energy structure of Ag(5)HIO(+) consists of an OH ligated to the face of a distorted trigonal bipyramid with I located at a vertex, while those for both Ag(4)X(+) (X = OH, I) involve AgX bound to a Ag(3)(+) core. The calculations also predict the following: (i) the ion-molecule reaction of Ag(5)(+) and ICH(2)CH(2)OH to yield Ag(5)HIO(+) is exothermic by 34.3 kcal mol(-1), consistent with the fact that this reaction readily occurs under the near thermal experimental conditions, (ii) the lowest energy products for fragmentation of Ag(5)HIO(+) arise from loss of AgI, consistent with this being the major pathway in the CID experiments.  相似文献   

18.
Photolysis of chloroiodomethane (CH(2)ClI) in cryogenic matrices followed by recombination of the nascent radical pair produces an isomer (CH(2)Cl-I) that features a halogen-halogen (Cl-I) bond. Using ultrafast laser pulses, it is possible to follow the formation of this isomer by transient electronic absorption in low-temperature matrices of N(2), CH(4), and Ar. Frequency-domain measurements provide vibrational and electronic spectra, and electronic structure calculations give the structures of the isomers and the minimum energy path that connects them. The ultrafast experiments cleave the C-I bond with a 267-nm photolysis pulse and probe the formation of the isomer at wavelengths between 435 nm and 510 nm. The longest wavelengths preferentially interrogate vibrationally excited molecules, and their transient absorption shows that the highly vibrationally excited isomer appears within 1 to 2 ps, depending on the matrix, likely reflecting the loss of 2000 cm(-1) or more of energy in a strong, inelastic collision of the fragments with the matrix. The subsequent relaxation of the vibrationally excited isomer occurs in 20 to 40 ps, a time that is comparable to those observed for halomethane molecules and their isomers in liquids and in supercritical CO(2). These observations suggest that the formation and initial relaxation of the isomer in dense media do not depend strongly on the identity of the surroundings.  相似文献   

19.
Fourier transform visible spectroscopy, in conjunction with VUV photons produced by a synchrotron, is employed to investigate the photodissociation of CH3CN. Emission is observed from both the CN(B2Sigma+-X2Sigma+) and CH(A2Delta-X2Pi) transitions; only the former is observed in spectra recorded at 10.2 and 11.5 eV, whereas both are detected in the 16 eV spectrum. The rotational and vibrational temperatures of both the CN(B2Sigma+) and CH(A2Delta) radical products are derived using a combination of spectral simulations and Boltzmann plots. The CN(B2Sigma+) fragment displays a bimodal rotational distribution in all cases. Trot(CN(B2Sigma+)) ranges from 375 to 600 K at lower K' and from 1840 to 7700 K at higher K' depending on the photon energy used. Surprisal analyses indicate clear bimodal rotational distributions, suggesting CN(B2Sigma+) is formed via either linear or bent transition states, respectively, depending on the extent of rotational excitation in this fragment. CH(A2Delta) has a single rotational distribution when produced at 16 eV, which results in Trot(CH(A2Delta))=4895+/-140 K in v'=0 and 2590+/-110 K in v'=1. From thermodynamic calculations, it is evident that CH(A2Delta) is produced along with CN(X2Sigma+)+H2. These products can be formed by a two step mechanism (via excited CH3* and ground state CN(X2Sigma+)) or a process similar to the "roaming" atom mechanism; the data obtained here are insufficient to definitively conclude whether either pathway occurs. A comparison of the CH(A2Delta) and CN(B2Sigma+) rotational distributions produced by 16 eV photons allows the ratio between the two excited fragments at this energy to be determined. An expression that considers the rovibrational populations of both band systems results in a CH(A2Delta):CN(B2Sigma+) ratio of (1.2+/-0.1):1 at 16 eV, thereby indicating that production of CH(A2Delta) is significant at 16 eV.  相似文献   

20.
The real time photodissociation dynamics of CH(3)I from the A band has been studied experimentally and theoretically. Femtosecond pump-probe experiments in combination with velocity map imaging have been carried out to measure the reaction times (clocking) of the different (nonadiabatic) channels of this photodissociation reaction yielding ground and spin-orbit excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch and umbrella modes) CH(3) fragments. The measured reaction times have been rationalized by means of a wave packet calculation on the available ab initio potential energy surfaces for the system using a reduced dimensionality model. A 40 fs delay time has been found experimentally between the channels yielding vibrationless CH(3)(nu=0) and I((2)P(32)) and I(*)((2)P(12)) that is well reproduced by the calculations. However, the observed reduction in delay time between the I and I(*) channels when the CH(3) fragment appears with one or two quanta of vibrational excitation in the umbrella mode is not well accounted for by the theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号