首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Collision induced (CI) processes involving hydrogen atoms on a graphite surface are studied quantum mechanically within the rigid, flat surface approximation, using a time-dependent wave packet method. The Eley-Rideal (ER) reaction and collision induced desorption (CID) cross sections are obtained with the help of two propagations which use different sets of coordinates, a "product" and a "reagent" set. Several adsorbate-substrate initial states of the target H atom in the chemisorption well are considered, and CI processes are studied over a wide range of projectile energy. Results show that (i) the Eley-Rideal reaction is the major reactive outcome and (ii) CID cross sections do not exceed 4 A2 and present dynamic thresholds for low values of the target vibrational quantum number. ER cross sections show oscillations at high energies which cannot be reproduced by classical and quasiclassical trajectory calculations. They are related to the vibrational excitation of the reaction products, which is a rather steep decreasing function of the collision energy. This behavior causes a selective population of the low-lying vibrational states and allows the quantization of the product molecular states to manifest itself in a collisional observable. A peak structure in the CID cross section is also observed and is assigned to the selective population of metastable states of the transient molecular hydrogen.  相似文献   

2.
Classical trajectory methods are used to examine the trapping and sticking of H and D atoms on the graphite (0001) surface. Total energy calculations based on density functional theory are used to construct the model potential energy surface, and graphite clusters of up to 121 atoms are considered. For hydrogen to chemisorb, the bonding carbon must pucker out of the surface plane by roughly 0.4 A. For incident energies above the 0.2 eV barrier, any trapped H atoms must rapidly dissipate their excess energy into the surrounding lattice within a few vibrations of the C-H stretch in order to remain bound. For sufficiently large clusters, the C-H bond stabilizes within about 0.1 ps. The sticking probability for D at 150 K is in the range of 5%-10%, more-or-less consistent with the most recent measurements in the limit of zero coverge. Variation with isotope and substrate temperature is weak. We estimate that the sticking cross section for adsorption at the para site, directly across the sixfold carbon ring from an already adsorbed H atom, can be four or more times larger that the zero coverage sticking cross section.  相似文献   

3.
The trapping and sticking of H and D atoms on the graphite (0001) surface is examined over the energy range 0.1-0.9 eV. Total electronic energy calculations based on density functional theory are used to develop a potential energy surface that allows for the full three-dimensional motion of the incident atom and the reconstruction of the bonding carbon atom, which must pucker out of the surface to form a stable bond. Classical methods are used to compute trapping cross sections as a function of incident energy. The C-H bond, once formed, rapidly dissociates without a mechanism to dissipate its excess energy. However, a number of long-lived trapping resonances exist, and for impact parameters below 1 A or so, several percent of the incident H atoms can remain trapped for 1 ps or more. This long-time trapping probability increases significantly when additional lattice degrees of freedom are added to carry energy away from the C-H stretch. Trapping can also increase with an increasing collision impact parameter, as H vibrations parallel to the surface become excited, leaving less energy in the C-H stretch. The trapping cross section at 1 ps reaches a maximum of 0.2 A2 for an H atom energy of 0.3 eV. Assuming that any atoms remaining trapped after 1 ps fully relax and stick, we estimate a lower bound for the sticking probability of H and D to be 0.024 and 0.050, respectively, about an order of magnitude below the experimental values.  相似文献   

4.
The exothermic, collinearly-dominated Eley-Rideal hydrogen formation on graphite is studied with electronic structure and quantum dynamical means. In particular, the focus is on the importance of the model used to describe the graphitic substrate, in light of the marked discrepancies present in available literature results. To this end, the collinear reaction is considered and the potential energy surface is computed for a number of different graphitic surface models using Density Functional Theory (DFT) for different dynamical regimes. Quantum dynamics is performed with wavepacket techniques down to the cold collision energies relevant for the chemistry of the interstellar medium. Results show that the reactivity at moderate-to-high collision energies sensitively depends on the shape of the PES in the entrance channel, which in turn is related to the adopted surface model. At low energies we rule out the presence of any barrier to reaction, thereby highlighting the importance of quantum reflection in limiting the reaction efficiency.  相似文献   

5.
The scattering of atomic nitrogen over a N-pre-adsorbed W(100) surface is theoretically described in the case of normal incidence off a single adsorbate. Dynamical reaction mechanisms, in particular Eley-Rideal (ER) abstraction, are scrutinized in the 0.1-3.0?eV collision energy range and the influence of temperature on reactivity is considered between 300 and 1500 K. Dynamics simulations suggest that, though non-activated reaction pathways exist, the abstraction process exhibits a significant collision energy threshold (0.5 eV). Such a feature, which has not been reported so far in the literature, is the consequence of a repulsive interaction between the impinging and the pre-adsorbed nitrogens along with a strong attraction towards the tungsten atoms. Above threshold, the cross section for ER reaction is found one order of magnitude lower than the one for hot-atoms formation. The abstraction process involves the collision of the impinging atom with the surface prior to reaction but temperature effects, when modeled via a generalized Langevin oscillator model, do not affect significantly reactivity.  相似文献   

6.
We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also that absorption and reflection strongly depend on the correct consideration of lattice vibrations and the occurrence of trapping.  相似文献   

7.
We present Monte Carlo simulations on Eley-Rideal abstraction reactions of atomic hydrogen chemisorbed on graphite. The results are obtained via a hybrid approach where energy barriers derived from density functional theory calculations are used as input to Monte Carlo simulations. By comparing with experimental data, we discriminate between contributions from different Eley-Rideal mechanisms. A combination of two different mechanisms yields good quantitative and qualitative agreement between the experimentally derived and the simulated Eley-Rideal abstraction cross sections and surface configurations. These two mechanisms include a direct Eley-Rideal reaction with fast diffusing H atoms and a dimer mediated Eley-Rideal mechanism with increased cross section at low coverage. Such a dimer mediated Eley-Rideal mechanism has not previously been proposed and serves as an alternative explanation to the steering behavior often given as the cause of the coverage dependence observed in Eley-Rideal reaction cross sections.  相似文献   

8.
The exoergic Eley-Rideal hydrogen recombination on graphite surfaces is known to produce vibrationally hot product molecules. Realistic quantum scattering calculations at normal incidence over a wide range of collision energies show that the degree of vibrational excitation of the reaction product is a steep decreasing function of the collision energy. This results in selective population of the lower-lying vibrational levels and gives rise to an oscillating structure in the total reaction cross-sections at high energies, which cannot be reproduced by classical and quasi-classical trajectory calculations. An analogous quantum structure appears in the total collision-induced desorption cross-sections and is assigned to selective population of the metastable states of the transient molecular hydrogen.  相似文献   

9.
Classical trajectory calculations have been performed to investigate the collision-induced dissociation (CID) of the CH(3)SH(+) cation with Ar atoms. A new intramolecular potential energy surface for the CH(3)SH(+) cation is evaluated by interpolation of 3000 ab initio data points calculated at the MP2/6-311G(d,p) level of theory. The new potential energy surface includes seven accessible dissociation channels of the cation. The present QCT calculations show that migration of hydrogen atoms, leading to the rearrangement CH(3)SH(+) <--> CH(2)SH(2)(+), is significant at the collision energies considered (6.5-34.7 eV) and that the formation of CH(3)(+), CH(3)S(+), and CH(2)(+) cations takes place primarily by a "shattering" mechanism in which the products are formed just after the collision. The theoretical product abundances are found to be in qualitative agreement with the experimental data. However, at high collision energies, the calculated total cross sections for the formation of CH(3)(+) and CH(2)SH(+) cations are noticeably larger than the experimental determinations. Several features of the dynamics of the CID processes are discussed.  相似文献   

10.
Electron screening corrections to the cross sections for low energy scattering of muonic hydrogen on hydrogen atoms are calculated. It is shown that the presence of the electron influences considerably the elastic cross sections at collision energies below 1 eV. This influence is relatively small for the spin-flip and isotopic exchange processes.  相似文献   

11.
《Chemical physics letters》1987,133(2):129-134
Effects of the length of one-dimensional semi-infinite lattice chains on atom/chain energy transfer processes have been studied through calculations of time evolution of the dynamical variables in classical mechanics. The amount of energy transfer varies strongly with number of lattice atoms. For a given atom/chain system, the chain length needed to determine energy transfer can be very long at low collision energies, but length rapidly decreases with rising energy. The presence of a light surface impurity atom can significantly reduce the required length.  相似文献   

12.
Using quasiclassical methods and a potential energy surface based on total energy calculations, we have found that H atoms react with Cl atoms adsorbed onto a Au(111) surface to produce HCl via Eley-Rideal (ER), hot atom (HA), and Langmuir-Hinschelwood (LH) pathways. We observe two ER mechanisms. At small normal incidence energies reaction results from a more or less direct collision with Cl, leading to a large amount of product vibration (nu=8), and relatively cold rotation and translation. In the second mechanism, more dominant at near-normal incidence and/or large incident energies, the H atom passes near Cl, recoils from the metal, and is pulled into orbit about Cl. This leads to broader product state distributions, and a more even distribution of the 3.0 eV of available energy among the product degrees of freedom, similar to products formed via the HA pathway. Overall, ER processes tend to contribute less than 10% to the reactivity, and most of the HCl is formed via HA processes. There is an increase in HCl formation with surface temperature for both the ER and HA mechanisms, but this increase is relatively weak. We observe typically about 12% H atom sticking, which would lead to HCl formation via a LH process in the experiments, above 140 K. We observe a weak forward scattering due to the direct ER component, as in the experiments. However, unlike the experiments, we observe a dip in our product angular distributions about thetaf=0 degrees, which we ascribe to our quasiclassical approximation. While we tend to see more energy in the hot products than in the experiments, our product translational, rotational, and vibrational distributions are in relatively reasonable agreement with those measured. One major disagreement with experiment is that there is apparently a significant sticking of the H atom at low temperatures, leading to a large LH component. In addition, the ER and HA components increase much more strongly with temperature than in the calculations. It is possible that electon-hole pair excitations in the metal strongly relax both the H atom and the excited HCl molecules formed.  相似文献   

13.
The dynamics of the gas-phase hydrogen atom exchange reaction H + DCl --> HCl + D were studied using the pulsed laser photolysis/laser induced fluorescence "pump-and-probe" method. Laser photolysis of H2S at 222 nm was used to generate nonequilibrium distributions of translationally excited hydrogen atoms at high dilution in a flowing moderator gas (Ar)/reagent (DCl) mixture. H and D atoms were detected with sub-Doppler resolution via Lyman-alpha laser induced fluorescence spectroscopy, which allowed the measurement of the line shapes of the moderated H atom Doppler profiles as well as the concentration of the D atoms produced in the H + DCl --> HCl + D reaction. From the measured H atom Doppler profiles, the time evolution of the initially generated nascent nonequilibrium H atom speed distribution toward its room-temperature thermal equilibrium form was determined. In this way, the excitation function and the reaction threshold (E0 = 0.65 +/- 0.13 eV) for the H + DCl --> HCl + D reaction could be determined from the measured nonequilibrium D atom formation rates and single collision absolute reaction cross-section values of 0.12 +/- 0.04 A2 and 0.45 +/- 0.11 A2 measured at reagent collision energies of 1.0 and 1.4 eV, respectively.  相似文献   

14.
We report the effects of collision energy (Ecol) and five different H2CO+ vibrational modes on the reaction of H2CO+ with C2D4 over the center-of-mass E(col) range from 0.1 to 2.1 eV. Properties of various complexes and transition states were also examined computationally. Seven product channels are observed. Charge transfer (CT) has the largest cross section over the entire energy range, substantially exceeding the hard sphere cross section at high energies. Competing with CT are six channels involving transfer of one or more hydrogen atoms or protons and one involving formation of propanal, followed by hydrogen elimination. Despite the existence of multiple deep wells on the potential surface, all reactions go by direct mechanisms, except at the lowest collision energies, where short-lived complexes appear to be important. Statistical complex decay appears adequate to account for the product branching at low collision energies, however, even at the lowest energies, the vibrational effects are counter to statistical expectations. The pattern of Ecol and vibrational mode effects provide insight into factors that control reaction and interchannel competition.  相似文献   

15.
We have employed density-functional theory (DFT) to investigate the abstraction of a nitrogen atom from the Si(100)-(2 x 1) surface by a gas-phase O(3P) atom for different initial bonding configurations of nitrogen at the surface. For the N-Si(100) structures investigated, nitrogen abstraction by an O(3P) atom is predicted to be exothermic by at least 1.9 eV. Abstraction in a single elementary step is found only for the interaction of an O(3P) atom with nitrogen bound in a coordinatively saturated configuration, and an energy barrier of 0.20 eV is computed for this reaction. For nitrogen bound in coordinatively unsaturated configurations, abstraction is predicted to occur by precursor-mediated pathways in which the initial O-surface collision results in the formation of a N-O bond and the concomitant release of between 2.7 and 4.8 eV of energy into the surface, depending on the initial N-Si(100) structure. This initial step produces different surface structures containing an adsorbed NO species, which can then undergo a series of elementary steps leading to NO desorption. Since the barriers for these steps are found to be less than 1 eV in all cases, a significant excess of energy is available from initial N-O bond formation that could activate NO desorption within no more than a few vibrational periods after the initial gas-surface collision. Nitrogen abstraction by such a pathway is essentially an Eley-Rideal process since NO desorption occurs rapidly after the initial gas-surface collision, without the reactants thermally accommodating with the surface. These computational results indicate that nitrogen abstraction by gaseous O(3P) atoms should be facile, even at low surface temperatures, if nitrogen is bound to the Si(100) surface in coordinatively unsaturated configurations.  相似文献   

16.
We have studied the formation of the H2 molecule on a graphite surface, when both H atoms are initially physisorbed. The graphite surface is assumed to be planar. The interaction potential is modeled to reproduce the experimental properties of H physisorption on graphite. Extending our previous work [S. Morisset, F. Aguillon, M. Sizun, and V. Sidis, J. Chem. Phys. 121, 6493 (2004)], full-dimensionality quantum calculations are presented for collision energies ranging from 4 to 50 meV. It is shown that the reaction occurs with a large cross section and produces the H2 molecule with a considerable amount of vibrational energy. The mechanism is either direct or involves the formation of an intermediate complex.  相似文献   

17.
18.
All the channels of the reaction dynamics of gas-phase H (or D) atoms with D (or H) atoms adsorbed onto a Cu(111) surface have been studied by quasiclassical constant energy molecular dynamics simulations. The surface is flexible and is prepared at different temperature values, such as 30 K, 94 K, and 160 K. The adsorbates were distributed randomly on the surface to create 0.18 ML, 0.28 ML, and 0.50 ML of coverages. The multi-layer slab is mimicked by a many-body embedded-atom potential energy function. The slab atoms can move according to the exerted external forces. Treating the slab atoms non-rigid has an important effect on the dynamics of the projectile atom and adsorbates. Significant energy transfer from the projectile atom to the surface lattice atoms takes place especially during the first impact that modifies significantly the details of the dynamics of the collisions. Effects of the different temperatures of the slab are investigated in this study. Interaction between the surface atoms and the adsorbates is modeled by a modified London-Eyring-Polanyi-Sato (LEPS) function. The LEPS parameters are determined by using the total energy values which were calculated by a density functional theory and a generalized gradient approximation for an exchange-correlation energy for many different orientations, and locations of one- and two-hydrogen atoms on the Cu(111) surface. The rms value of the fitting procedure is about 0.16 eV. Many different channels of the processes on the surface have been examined, such as inelastic reflection of the incident hydrogen, subsurface penetration of the incident projectile and adsorbates, sticking of the incident atom on the surface. In addition, hot-atom and Eley-Rideal direct processes are investigated. The hot-atom process is found to be more significant than the Eley-Rideal process. Furthermore, the rate of subsurface penetration is larger than the sticking rate on the surface. In addition, these results are compared and analyzed as a function of the surface temperatures.  相似文献   

19.
The unimolecular dissociation dynamics of aluminum clusters following collision with either a rare gas atom or a surface is investigated by classical trajectory simulations with model potentials. Two conformers of Al(6) with very distinct shapes, i.e., the spherical O(h) and planar C(2)(h) clusters, are considered in this work. The initial vibrational energy and angular momentum distributions resulting from collision, as well as the energy and angular momentum resolved lifetime distributions, of excited clusters were determined for both collision-induced dissociation (CID) and surface-induced dissociation (SID) processes. The partitioning of excitation energy acquired upon collision was found to depend on the excitation mechanism (CID or SID), as well as on the cluster molecular shape, especially in the case of CID. For both types of processes, the energy and angular momentum resolved excited cluster lifetime distributions were found to decay exponentially, in agreement with statistical theories of chemical reactions, suggesting intrinsic Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. Moreover, the simulated microcanonical rate constants determined from the cluster lifetime distributions are in good agreement with the predictions of the orbiting transition state model of phase space theory (OTS/PST), which further supports the statistical character of cluster CID and SID. Thus, in the CID and SID of highly fluxional systems such as aluminum clusters, the rate of intramolecular vibrational energy redistribution (IVR) is much faster than the dissociation rate, which validates one of the key assumptions, i.e., post-collision statistical behavior, underlying the models that are routinely used to determine cluster binding energies from experimental CID/SID cross sections.  相似文献   

20.
Penning ionization of formic acid (HCOOH), acetic acid (CH3COOH), and methyl formate (HCOOCH3) upon collision with metastable He*(2(3)S) atoms was studied by collision-energy/electron-energy-resolved two-dimensional Penning ionization electron spectroscopy (2D-PIES). Anisotropy of interaction between the target molecule and He*(2(3)S) was investigated based on the collision energy dependence of partial ionization cross sections (CEDPICS) obtained from 2D-PIES as well as ab initio molecular orbital calculations for the access of a metastable atom to the target molecule. For the interaction potential calculations, a Li atom was used in place of He*(2(3)S) metastable atom because of its well-known similarity in interaction with targets. The results indicate that in the studied collision energy range the attractive potential localizes around the oxygen atoms and that the potential well at the carbonyl oxygen atom is at least twice as much as that at the hydroxyl oxygen. Moreover we can notice that attractive potential is highly anisotropic. Repulsive interactions can be found around carbon atoms and the methyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号