首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical characterization of the potential energy surfaces of the singlet benzene excimer states derived from the B2u monomer excited state has been performed using time-dependent density functional theory. The excited-state potential energy surfaces were initially characterized by computations along the parallel and perpendicular intermolecular translational coordinates. These calculations predict that the lowest excited state for parallel translation is bound with a minimum at 3.15 angstroms and with a binding energy of 0.46 eV, while the perpendicular translational coordinate was essentially found to be a repulsive state. At the calculated minimum distance, the effect of in-plane rotation, out-of-plane rotation, and slipped-parallel translation were examined. The rotational calculations predict that deviations from the D6h geometry lead to a destabilization of the excimer state; however, small angular variations in the range of 0 degrees -10 degrees are predicted to be energetically feasible. The slipped-parallel translational calculations also predict a destabilizing effect on the excimer state and were found to possess barriers to this type of dissociation in the range of 0.50-0.61 eV. When compared to experimentally determined values for the benzene excimer energetics, the calculated values were found to be in semiquantitative agreement. Overall, this study suggests that the time-dependent density functional theory method can be used to characterize the potential energy surfaces and the energetics of aromatic excimers with reasonable accuracy.  相似文献   

2.
An implementation of real-time time-dependent density functional theory (RT-TDDFT) within the TURBOMOLE program package is reported using Gaussian-type orbitals as basis functions, second and fourth order Magnus propagator, and the self-consistent field as well as the predictor–corrector time integration schemes. The Coulomb contribution to the Kohn–Sham matrix is calculated combining density fitting approximation and the continuous fast multipole method. Performance of the implementation is benchmarked for molecular systems with different sizes and dimensionalities. For linear alkane chains, the wall time for density matrix time propagation step is comparable to the Kohn-Sham (KS) matrix construction. However, for larger two- and three-dimensional molecules, with up to about 5,000 basis functions, the computational effort of RT-TDDFT calculations is dominated by the KS matrix evaluation. In addition, the maximum time step is evaluated using a set of small molecules of different polarities. The photoabsorption spectra of several molecular systems calculated using RT-TDDFT are compared to those obtained using linear response time-dependent density functional theory and coupled cluster methods.  相似文献   

3.
Time-dependent density functional theory (TDDFT) is implemented within the Tamm-Dancoff approximation (TDA) using a pseudospectral approach to evaluate two-electron repulsion integrals. The pseudospectral approximation uses a split representation with both spectral basis functions and a physical space grid to achieve a reduction in the scaling behavior of electronic structure methods. We demonstrate here that exceptionally sparse grids may be used in the excitation energy calculation, following earlier work employing the pseudospectral approximation for determining correlation energies in wavefunction-based methods with similar conclusions. The pseudospectral TDA-TDDFT method is shown to be up to ten times faster than a conventional algorithm for hybrid functionals without sacrificing chemical accuracy.  相似文献   

4.
We apply the long-range correction (LC) scheme for exchange functionals of density functional theory to time-dependent density functional theory (TDDFT) and examine its efficiency in dealing with the serious problems of TDDFT, i.e., the underestimations of Rydberg excitation energies, oscillator strengths, and charge-transfer excitation energies. By calculating vertical excitation energies of typical molecules, it was found that LC-TDDFT gives accurate excitation energies, within an error of 0.5 eV, and reasonable oscillator strengths, while TDDFT employing a pure functional provides 1.5 eV lower excitation energies and two orders of magnitude lower oscillator strengths for the Rydberg excitations. It was also found that LC-TDDFT clearly reproduces the correct asymptotic behavior of the charge-transfer excitation energy of ethylene-tetrafluoroethylene dimer for the long intramolecular distance, unlike a conventional far-nucleus asymptotic correction scheme. It is, therefore, presumed that poor TDDFT results for pure functionals may be due to their lack of a long-range orbital-orbital interaction.  相似文献   

5.
A general framework within time-dependent density functional theory is presented for the calculation of excitations to states of arbitrary multiplicity in molecular systems with a non-singlet ground state. The proposed approach combines generalized orbital excitation operators designed to generate excited states which have well-defined multiplicities and the noncollinear formulation of density functional theory and it can be straightforwardly implemented in currently existing density functional programs.  相似文献   

6.
Starting from a formally exact density-functional representation of the frequency-dependent linear density response and exploiting the fact that the latter has poles at the true excitation energies, we develop a density-functional method for the calculation of excitation energies. Simple additive corrections to the Kohn-Sham single-particle transition energies are derived whose actual computation only requires the ordinary static Kohn-Sham orbitals and the corresponding eigenvalues. Numerical results are presented for spin-singlet and triplet energies. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
Linear response time-dependent density functional theory is used to study low-lying electronic continuum states of targets that can bind an extra electron. Exact formulas to extract scattering amplitudes from the susceptibility are derived in one dimension. A single-pole approximation for scattering phase shifts in three dimensions is shown to be more accurate than static exchange for singlet electron-He(+) scattering.  相似文献   

8.
Adiabatic time-dependent density functional theory fails for excitations of a heteroatomic molecule composed of two open-shell fragments at large separation. Strong frequency dependence of the exchange-correlation kernel is necessary for both local and charge-transfer excitations. The root of this is the static correlation created by the step in the exact Kohn-Sham ground-state potential between the two fragments. An approximate nonempirical kernel is derived for excited molecular dissociation curves at large separation. Our result is also relevant when the usual local and semilocal approximations are used for the ground-state potential, as static correlation there arises from the coalescence of the highest occupied and lowest unoccupied orbital energies as the molecule dissociates.  相似文献   

9.
We present ab initio calculations of frequency-dependent linear and nonlinear optical responses based on real-time time-dependent density functional theory for arbitrary photonic molecules. This approach is based on an extension of an approach previously implemented for a linear response using the electronic structure program SIESTA. Instead of calculating excited quantum states, which can be a bottleneck in frequency-space calculations, the response of large molecular systems to time-varying electric fields is calculated in real time. This method is based on the finite field approach generalized to the dynamic case. To speed the nonlinear calculations, our approach uses Gaussian enveloped quasimonochromatic external fields. We thereby obtain the frequency-dependent second harmonic generation beta(-2omega;omega,omega), the dc nonlinear rectification beta(0;-omega,omega), and the electro-optic effect beta(-omega;omega,0). The method is applied to nanoscale photonic nonlinear optical molecules, including p-nitroaniline and the FTC chromophore, i.e., 2-[3-Cyano-4-(2-{5-[2-(4-diethylamino-phenyl)-vinyl]-thiophen-2-yl}-vinyl)-5,5-dimethyl-5H-furan-2-ylidene]-malononitrile, and yields results in good agreement with experiment.  相似文献   

10.
We present a method suitable for large-scale accurate simulations of excited state dynamics within the framework of time-dependent density functional theory (DFT). This is achieved by employing a local atomic basis-set representation and real-time propagation of excited state wave functions. We implement the method within SIESTA, a standard ground-state DFT package with local atomic basis, and demonstrate its potential for realistic and accurate excited state dynamics simulations using small and medium-sized molecules as examples (H(2), CO, O(3), and indolequinone). The method can be readily applied to problems involving nanostructures and large biomolecules.  相似文献   

11.
A formulation of time-dependent density functional theory (TDDFT) in the presence of a static imaginary perturbation is derived. A perturbational approach is applied leading to corrections to various orders in the quantities of interest, namely, the excitation energies and transition densities. The perturbed TDDFT equations are relatively straightforward to derive but the resulting expressions are rather cumbersome. Simplifications of these equations are suggested. Both the simplified and full expressions are used to obtain equations for first- and second-order corrections to the excitation energy, the first-order correction to the transition density, and the corrections for both quantities to first-order in two different perturbations. This formulation, called magnetically perturbed TDDFT, details how conventional TDDFT calculations can be corrected to allow for the inclusion of a static magnetic field and/or spin-orbit coupling.  相似文献   

12.
《Chemical physics letters》2003,367(5-6):778-784
Non-expanded dispersion energies are calculated from time-dependent coupled-perturbed density functional theory (DFT) employing various non-hybrid and hybrid exchange-correlation potentials and suitable adiabatic local density approximations for the exchange-correlation kernel. Considering the dimer systems He2, Ne2, Ar2, NeAr, NeHF, ArHF, (H2)2, (HF)2, and (H2O)2 it is shown that the effects of intramonomer electron correlation on the dispersion energy are accurately reproduced with the PBE0AC exchange-correlation potential. In contrast, the uncoupled sum-over-states approximation yields inacceptable errors. These are mainly due to neglect of the Coulomb and exchange-correlation kernels and therefore, not substantially improved through an asymptotic correction of the exchange-correlation potential.  相似文献   

13.
We present density-functional theory for time-dependent response functions up to and including cubic response. The working expressions are derived from an explicit exponential parametrization of the density operator and the Ehrenfest principle, alternatively, the quasienergy ansatz. While the theory retains the adiabatic approximation, implying that the time-dependency of the functional is obtained only implicitly-through the time dependence of the density itself rather than through the form of the exchange-correlation functionals-it generalizes previous time-dependent implementations in that arbitrary functionals can be chosen for the perturbed densities (energy derivatives or response functions). In particular, general density functionals beyond the local density approximation can be applied, such as hybrid functionals with exchange correlation at the generalized-gradient approximation level and fractional exact Hartree-Fock exchange. With our implementation the response of the density can always be obtained using the stated density functional, or optionally different functionals can be applied for the unperturbed and perturbed densities, even different functionals for different response order. As illustration we explore the use of various combinations of functionals for applications of nonlinear optical hyperpolarizabilities of a few centrosymmetric systems; molecular nitrogen, benzene, and the C(60) fullerene. Considering that vibrational, solvent, and local field factors effects are left out, we find in general that very good experimental agreement can be obtained for the second dynamic hyperpolarizability of these systems. It is shown that a treatment of the response of the density beyond the local density approximation gives a significant effect. The use of different functional combinations are motivated and discussed, and it is concluded that the choice of higher order kernels can be of similar importance as the choice of the potential which governs the Kohn-Sham orbitals.  相似文献   

14.
Odd-even effects of short-circuit current density and power conversion efficiency (PCE) are an interesting phenomenon in some organic solar cells. Although some explanations have been given, why they behave in such a way is still an open question. In the present work, we investigate a set of acceptor-donor-acceptor simple oligomer-like small molecules, named the DRCNnT (n = 5-9) series, to give an insight into this phenomenon because the solar cells based on them have high PCE (up to 10.08%) and show strong odd-even effects in experiments. By modeling the DRCNnT series and using density functional theory, we have studied the ground-state electronic structures of the DRCNnT (n = 5-9) series in condensed phase. The calculated results reproduce the experimental trends well. Furthermore, we find that the exciton-binding energies of the DRCNnT series may be one of the key parameters to explain this phenomenon because they also show odd-even effects. In addition, by studying the effects of alkyl branch and terminal group on odd-even effects of dipole moment, we find that eliminating one or two alkyl branches does not break the odd-even effects of dipole moments, but eliminating one or two terminal groups does. Finally, we conclude that removing one alkyl branch close to the terminal group of DRCN5T can decrease highest occupied molecular orbital (HOMO) energy (thus increasing open circuit voltage) and increase dipole moment (thus enhancing charge separation and short-circuit current). This could be a new and simple method to increase the PCE of DRCN5T-based solar cells.  相似文献   

15.
Excited state properties of one-dimensional molecular materials are dominated by many-body interactions resulting in strongly bound confined excitons. These effects cannot be neglected or treated as a small perturbation and should be appropriately accounted for by electronic structure methodologies. We use adiabatic time-dependent density functional theory to investigate the electronic structure of one-dimensional organic semiconductors, conjugated polymers. Various commonly used functionals are applied to calculate the lowest singlet and triplet state energies and oscillator strengths of the poly(phenylenevinylene) and ladder-type (poly)(para-phenylene) oligomers. Local density approximations and gradient-corrected functionals cannot describe bound excitonic states due to lack of an effective attractive Coulomb interaction between photoexcited electrons and holes. In contrast, hybrid density functionals, which include long-range nonlocal and nonadiabatic corrections in a form of a fraction of Hartree-Fock exchange, are able to reproduce the excitonic effects. The resulting finite exciton sizes are strongly dependent on the amount of the orbital exchange included in the functional.  相似文献   

16.
By far, the most common use of time-dependent density functional theory is in the linear-reponse regime, where it provides information about electronic excitations. Ideally, the linear-response equations should be solved by a method that avoids the use of the unoccupied Kohn-Sham states--such as the Sternheimer method--as this reduces the complexity and increases the precision of the calculation. However, the Sternheimer equation becomes ill-conditioned near and indefinite above the first resonant frequency, seriously hindering the use of efficient iterative solution methods. To overcome this serious limitation, and to improve the general convergence properties of the iterative techniques, we propose a simple preconditioning strategy. In our method, the Sternheimer equation is solved directly as a linear equation using an iterative Krylov subspace method, i.e., no self-consistent cycle is required. Furthermore, the preconditioner uses the information of just a few unoccupied states and requires simple and minimal modifications to existing implementations. In this way, convergence can be reached faster and in a considerably wider frequency range than the traditional approach.  相似文献   

17.
Time-dependent density matrix functional theory can be formulated in terms of coupled-perturbed response equations, in which a coupling matrix K(omega) features, analogous to the well-known time-dependent density functional theory (TDDFT) case. An adiabatic approximation is needed to solve these equations, but the adiabatic approximation is much more critical since there is not a good "zero order" as in TDDFT, in which the virtual-occupied Kohn-Sham orbital energy differences serve this purpose. We discuss a simple approximation proposed earlier which uses only results from static calculations, called the static approximation (SA), and show that it is deficient, since it leads to zero response of the natural orbital occupation numbers. This leads to wrong behavior in the omega-->0 limit. An improved adiabatic approximation (AA) is formulated. The two-electron system affords a derivation of exact coupled-perturbed equations for the density matrix response, permitting analytical comparison of the adiabatic approximation with the exact equations. For the two-electron system also, the exact density matrix functional (2-matrix in terms of 1-matrix) is known, enabling testing of the static and adiabatic approximations unobscured by approximations in the functional. The two-electron HeH(+) molecule shows that at the equilibrium distance, SA consistently underestimates the frequency-dependent polarizability alpha(omega), the adiabatic TDDFT overestimates alpha(omega), while AA improves upon SA and, indeed, AA produces the correct alpha(0). For stretched HeH(+), adiabatic density matrix functional theory corrects the too low first excitation energy and overpolarization of adiabatic TDDFT methods and exhibits excellent agreement with high-quality CCSD ("exact") results over a large omega range.  相似文献   

18.
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.  相似文献   

19.
The local-scaling transformation version of density functional theory (LS-DFT ) is reviewed. It is shown that in the context of LS-DFT it is possible to construct N-representable energy density functionals and that the theory provides systematic ways for calculating strict upper bounds to the exact energies. The importance of the concept of “orbit” in LS-DFT is indicated and several approaches leading to intraorbit and interorbit optimization are discussed. Results of the application of these optimization procedures to the determination of upper bounds for the ground-state energy of the beryllium atom are given. Also, numerical results are reported on the use of local scaling transformations for the direct solution of the Kohn-Sham equations via the density-constrained minimization of the kinetic energy of a noninteracting system. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The authors present an occupation number averaging scheme for time-dependent density functional response theory (TD-DFRT) in frequency domain. The known problem that TD-DFRT within the local (spin) density approximation (LDA/LSDA) inaccurately predicts Rydberg and charge-transfer excitation energies has been reexamined from the methodology of linear response, without explicit correction of the exchange-correlation potential. The working equations of TD-DFRT are adapted to treat arbitrary difference of orbital occupation numbers, using the nonsymmetric matrix form of Casida's formulation of TD-DFRT [M. E. Casida, in Recent Advances in Density Functional Methods, edited by D. P. Chong (World Scientific, Singapore, 1995), Pt. I, p. 155]. The authors' scheme is applied to typical closed-shell and open-shell molecular systems by examining the dependence of excitation energies on the fraction of excited electron. Good performance of this modified linear response scheme is shown, and is consistent with the authors' previous examination by the real-time propagation approach, suggesting that the calculation of average excitation energies might be one of the ways to better decode excitation energies from LDA/LSDA. Different techniques for treating singlet, triplet, and doublet states are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号