首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
To elucidate the nature of processes involved in electrically driven particle aggregation in steady fields, flows near a charged spherical colloidal particle next to an electrode were studied. Electrical body forces in diffuse layers near the electrode and the particle surface drive an axisymmetric flow with two components. One is electroosmotic flow (EOF) driven by the action of the applied field on the equilibrium diffuse charge layer near the particle. The other is electrohydrodynamic (EHD) flow arising from the action of the applied field on charge induced in the electrode polarization layer. The EOF component is proportional to the current density and the particle surface (zeta) potential, whereas our scaling analysis shows that the EHD component scales as the product of the current density and applied potential. Under certain conditions, both flows are directed toward the particle, and a superposition of flows from two nearby particles provides a mechanism for aggregation. Analytical calculations of the two flow fields in the limits of infinitesimal double layers and slowly varying current indicate that the EOF and EHD flow are of comparable magnitude near the particle whereas in the far field the EHD flow along the electrode is predominant. Moreover, the dependence of EHD flow on the applied potential provides a possible explanation for the increased variability in aggregation velocities observed at higher field strengths.  相似文献   

2.
3.
Bubble and particle velocities in water and alcohols, under the influence of an electric field, were investigated in this work. Air bubbles were injected into the liquids through an electrified metal capillary insulated by glass with its tip left exposed. The end of the capillary from which the bubbles were released was conical in shape. Due to an electric field formed between the noninsulated capillary tip and a ground electrode immersed in the solvent, small bubbles were formed and used as tracers for the electrohydrodynamic (EHD) flow field. The pressure inside the capillary was measured for all liquids used in this study. For water, ethanol, and n-propanol, it was found that, at relatively low applied voltage, the pressure increases with voltage, reaches a maximum (pressure breakpoint), and then sharply decreases. This behavior is a result of the competition between the electric force appearing at the interface and the force due to the EHD flow near the capillary tip. The electric force tends to increase the pressure inside the capillary, while the EHD flow tends to decrease this pressure. For isopropanol and butanol, the pressure breakpoint was not observed in the range of voltage applied in the experiments. The EHD flow velocity was measured by using microbubbles and particles as flow tracers. An adaptive phase-Doppler velocimeter was employed to measure the velocity of bubbles, while the velocity of particles was measured by trajectory visualization of fluorescent particles. A discrepancy was observed between the two methods because of the location at which the measurements were made. It was found that average velocities of both bubbles and particles increase linearly with applied voltage. Experiments were also conducted to investigate pumping of water, which is a result of the EHD velocity near the capillary tip. The pumping flow rate was linearly related to the applied voltage and agreed well with EHD velocity measurements obtained from particle trajectories. Copyright 2000 Academic Press.  相似文献   

4.
As a simple model for a Pickering emulsion droplet, we consider the adsorption of spherical particles to a spherical liquid-liquid interface in order to investigate the curvature effect on the particle adsorption. By taking into account both the surface and the volume energies due to the presence of a particle, we show that the equilibrium contact angle is determined by the classical Young's equation although the adsorption energy depends on the curvature. We also calculate the partitioning of the colloidal particles among the two liquids and the interface. The distribution of colloidal particles is expressed in terms of the interfacial curvature as well as the relative wettability of the particle.  相似文献   

5.
In this Article, we report the dielectrophoretic assembly of colloidal particles and show how the kinetics of assembly and degree of ordering depend on the particle size, charge, solution ionic strength, and field strength and frequency. A special dielectrophoresis (DEP) sample cell is constructed and validated to quantitatively measure directed self-assembly via sequential light scattering and optical microscopy measurements. Our results confirm the recently established scaling for the order-disorder transition and extend it to higher scaled frequencies. The limiting scaling of the order-disorder transition and particle electrophoretic mobility are correctly predicted by the standard electrokinetic model (SEKM). In particular, the order-disorder transition line is predicted from the particle properties using a recently proposed empirical scaling law and the SEKM over an order of magnitude in particle size.  相似文献   

6.
Abstract

Sorption of ions may lead to variations in interparticle forces and, thus, changes in the stability of colloidal particles. Chemical interactions between metal ions and colloidal particles modify the molecular structure of the surface, the surface charge, and the electrical potential between colloidal particles. These modifications to the surface and to the electrical double layer due to metal ion sorption are reflected in the interaction force between a particle and another surface, which is measured in this study by atomic force microscopy (AFM). Specifically, AFM is used to investigate the sorption of copper ions from aqueous solutions by silica particles. The influence of metal ion concentration and solution ionic strength on surface forces is studied under transient conditions. Results show that as the metal ion concentration is decreased, charge reversal occurs and a longer period of time is required for the system to reach equilibrium. The ionic strength has no significant effect on sorption kinetics. Furthermore, neither metal concentration nor ionic strength exhibits any effect on sorption equilibria, indicating that for the experimental conditions used in this study, the surface sites of the silica particle are fully occupied by copper ions.  相似文献   

7.
An analytical study is presented for the magnetohydrodynamic (MHD) effects on a translating and rotating colloidal sphere in an arbitrary electrolyte solution prescribed with a general flow field and a uniform magnetic field at a steady state. The electric double layer surrounding the charged particle may have an arbitrary thickness relative to the particle radius. Through the use of a simple perturbation method, the Stokes equations modified with an electric force term, including the Lorentz force contribution, are dealt by using a generalized reciprocal theorem. Using the equilibrium double-layer potential distribution from solving the linearized Poisson-Boltzmann equation, we obtain closed-form formulas for the translational and angular velocities of the spherical particle induced by the MHD effects to the leading order. It is found that the MHD effects on the particle movement associated with the translation and rotation of the particle and the ambient fluid are monotonically increasing functions of κa, where κ is the Debye screening parameter and a is the particle radius. Any pure rotational Stokes flow of the electrolyte solution in the presence of the magnetic field exerts no MHD effect on the particle directly in the case of a very thick double layer (κa→0). The MHD effect caused by the pure straining flow of the electrolyte solution can drive the particle to rotate, but it makes no contribution to the translation of the particle.  相似文献   

8.
The small gap distance separating a spherical colloidal particle in electrophoretic motion from a planar nonconducting surface is a required parameter for calculating its electrophoretic mobility. In the presence of an externally applied electric field, this gap distance is determined by balancing the van der Waals, electrical double layer interaction, and gravitational forces with a dielectrophoretic (DEP) force. Here, the DEP force was determined analytically by integration of the Maxwell stress over the surface of the particle. The account of this force showed that its previous omission from the analysis always resulted in underpredicted gap distances. Furthermore, the DEP force dominated under conditions of low particle density or high electric field strength and led to much higher gap distances on the order of a few microns. In one particular case, a combination of low particle density and small particle size produced two possible equilibrium gap distances for the particle. However, the particle was unstable in the second equilibrium position when subjected to small perturbations. In general, larger particles had smaller gap sizes. The effects of four other parameters on gap distance were studied, and gap distances were found to increase with lower particle density, higher electric field strength, higher particle and wall zeta potentials, and lower Hamaker constants. Retardation effects on van der Waals attraction were considered.  相似文献   

9.
Micrometer-sized polystyrene particles form two-dimensional crystals in alternating current (ac) electric fields. The induced dipole-dipole interaction is the dominant force that drives this assembly. We report measurements of forces between colloidal particles in ac electric fields using optical tweezers and find good agreement with the point dipole model. The magnitude of the pair interaction forces depends strongly on the bulk solution conductivity and decreases as the ionic strength increases. The forces also decrease with increasing field frequency. The salt and frequency dependences are consistent with double layer polarization with a characteristic relaxation frequency omega(CD) approximately a(2)/D, where a is the particle radius and D is the ion diffusivity. This enables us to reinterpret the order-disorder transition reported for micrometer-sized polystyrene particles [Lumsdon et al., Langmuir 20, 2108 (2004)], including the dependence on particle size, frequency, and ionic strength. These results provide a rational framework for identifying assembly conditions of colloidal particles in ac fields over a wide range of parameters.  相似文献   

10.
The structural perturbations induced by colloidal particles immersed in a model nematic subjected to an external field are calculated employing integral equation methods. Maps of the density-orientational distribution about a colloidal particle are obtained, and these provide a microscopic picture of the colloid's nematic coat. We focus on colloidal particles that favor homeotropic anchoring, but planar anchoring cases are also considered. The range and structure of the nematic coat is shown to be significantly influenced by the nature of the anchoring, the size of the colloidal particle, the range and strength of the colloid-nematogen interaction, and the external field strength. All of these factors are discussed.  相似文献   

11.
Coating hydrogel films or microspheres by an adsorbed colloidal shell is one synthesis method for forming colloidosomes. The colloidal shell allows control of the release rate of encapsulated materials, as well as selective transport. Previous studies found that the packing density of self-assembled, adsorbed colloidal monolayers is independent of the colloidal particle size. In this paper we develop an equilibrium model that correlates the packing density of charged colloidal particles in an adsorbed shell to the particle dimensions in monodisperse and bidisperse systems. In systems where the molar concentration in solution is fixed, the increase in adsorption energy with increasing particle size leads to a monotonic increase in the monolayer packing density with particle radius. However, in systems where the mass fraction of the particles in the adsorbing solutions is fixed, increasing particle size also reduces the molar concentration of particles in solution, thereby reducing the probability of adsorption. The result is a nonmonotonic dependence of the packing density in the adsorbed layer on the particle radius. In bidisperse monolayers composed of two particle sizes, the packing density in the layer increases significantly with size asymmetry. These results may be utilized to design the properties of colloidal shells and coatings to achieve specific properties such as transport rate and selectivity.  相似文献   

12.
The use of spatially nonuniform electric fields for the contact-free colloidal particle assembly into ordered structures of various length scales is a research area of great interest. In the present work, numerical simulations are undertaken in order to advance our understanding of the physical mechanisms that govern this colloidal assembly process and their relation to the electric field characteristics and colloidal system properties. More specifically, the electric-field driven assembly of colloidal silica (d(p) = 0.32 and 2 μm) in DMSO, a near index matching fluid, is studied numerically over a range of voltages and concentration by means of a continuum thermodynamic approach. The equilibrium (u(f) = 0) and nonequilibrium (u(f) ≠ 0) cases were compared to determine whether fluid motion had an effect on the shape and size of assemblies. It was found that the nonequilibrium case was substantially different versus the equilibrium case, in both size and shape of the assembled structure. This dependence was related to the relative magnitudes of the electric-field driven convective motion of particles versus the fluid velocity. Fluid velocity magnitudes on the order of mm/s were predicted for 0.32 μm particles at 1% initial solids content, and the induced fluid velocity was found to be larger at the same voltage/initial volume fraction as the particle size decreased, owing to a larger contribution from entropic forces.  相似文献   

13.
The fluorescence recovery after photobleaching (FRAP) method and the fluorescence correlation spectroscopy (FCS) have been applied on suspensions of highly charged colloidal spheres with a small content of rod-shaped tobacco mosaic virus (TMV) particles. Since these methods only determine the self-diffusion coefficient of the fluorescently labeled species, D(S) of the rods and the spheres could independently be measured. The ionic strength of the dispersion medium has been varied to measure self-diffusion of rods and spheres in dependence on the degree of order of the matrix spheres. In contrast to FRAP, which allows the determination of the long-time self-diffusion coefficient D(S) (L), FCS measures self-diffusion on a shorter time scale. Thus a comparison of the results that were obtained by FCS and FRAP, in combination with Brownian Dynamics simulations, gives insight into the time dependence of the self-diffusion coefficient of an interacting colloidal system. As the mean interparticle distance of the matrix is of the same order of magnitude as the length of a TMV rod, the rotational motion is influenced by the assembly of spheres around a TMV particle. Since FCS is sensitive both to translational and rotational motion, whereas FRAP, which probes the diffusion at much larger length scales, is only sensitive to the translational motion of TMV, the comparison of diffusion coefficients measured employing FRAP and FCS can give some insights in the rotational diffusion: the experimental data indicate a slowing down of the rotational motion of a TMV rod with increasing structural order of the matrix spheres.  相似文献   

14.
The interaction between stable colloidal particles arriving at a pore entrance was studied using a numerical method for the case where the particle size is smaller than but of the same order as the pore size. The numerical method was adapted from a front-tracking technique developed for studying incompressible, multifluid flow by S. O. Unverdi and G. Tryggvason (J. Comp. Phys. 100, 25, 1992). The method is based on the finite difference solution of Navier-Stokes equation on a stationary, structured, Cartesian grid and the explicit representation of the particle-liquid interface using an unstructured grid that moves through the stationary grid. The simulations are in two dimensions, considering both deformable and nondeformable particles, and include interparticle colloidal interactions. The interparticle and particle-pore hydrodynamic interactions, which are very difficult to determine using existing analytical and semi-numerical, semi-analytical techniques in microhydrodynamics, are naturally accounted for in our numerical method and need not be explicity determined. Two- and three-particle motion toward a pore has been considered in our simulations. The simulations demonstrate how the competition between hydrodynamic forces and colloidal forces acting on particles dictate their flow behavior near the pore entrance. The predicted dependence of the particle flow behavior on the flow velocity and the ratio of pore size to particle size are qualitatively consistent with the experimental observations of V. Ramachandran and H. S. Fogler (J. Fluid Mech. 385, 129, 1999). Copyright 2000 Academic Press.  相似文献   

15.
Poly(vinyl alcohol) (PVA) was used as a steric stabilizer for the dispersion polymerization of cross-linked poly(N-isopropylacrylamide) (PNIPAM) in water. A series of reactions were carried out using PVA of varying molecular weight and degree of hydrolysis. Under appropriate conditions, PNIPAM particles of uniform and controllable size were produced using PVA as the stabilizer. The colloidal stability was investigated by measuring changes in particle size with temperature in aqueous suspensions of varying ionic strength. For comparison, parallel colloidal stability measurements were conducted on PNIPAM particles synthesized with low-molecular-weight ionic surfactants. PVA provides colloidal stability over a wide range of temperature and ionic strength, whereas particles produced with ionic surfactants flocculate in moderate ionic strength solutions upon collapse of the hydrogel as the temperature is increased. Experimental results and theoretical consideration indicate that sterically stabilized PNIPAM particles resulted from the grafting of PVA to the PNIPAM particle surface. The enhanced colloidal stability afforded by PVA allows the temperature-responsive PNIPAM particles to be used under physiological conditions where electrostatic stability is ineffective.  相似文献   

16.
An investigation is reported on the interfacial properties of nanometric colloidal silica dispersions in the presence of a cationic surfactant. These properties are the result of different phenomena such as the particle attachment at the interface and the surfactant adsorption at the liquid and at the particle interfaces. Since the latter strongly influences the hydrophobicity/lipophilicity of the particle, i.e., the particle affinity for the fluid interfacial environment, all those phenomena are closely correlated. The equilibrium and dynamic interfacial tensions of the liquid/air and liquid/oil interfaces have been measured as a function of the surfactant and particle concentration. The interfacial rheology of the same systems has been also investigated by measuring the dilational viscoelasticity as a function of the area perturbation frequency. These results are then crossed with the values of the surfactant adsorption on the silica particles, indirectly estimated through experiments based on the centrifugation of the dispersions. In this way it has been possible to point out the mechanisms determining the observed kinetic and equilibrium features. In particular, an important role in the mixed particle-surfactant layer reorganization is played by the Brownian transport of particles from the bulk to the interface and by the surfactant redistribution between the particle and fluid interface.  相似文献   

17.
The motion of a spherical colloidal particle with spontaneous electrochemical reactions occurring on its surface in an ionic solution subjected to an applied magnetic field is analyzed for an arbitrary zeta potential distribution. The thickness of the electric double layer adjacent to the particle surface is assumed to be much less than the particle radius. The solutions of the Laplace equations governing the magnetic scalar potential and electric potential, respectively, lead to the magnetic flux and electric current density distributions in the particle and fluid phases of arbitrary magnetic permeabilities and electric conductivities. The Stokes equations modified with the Lorentz force contribution for the fluid motion are dealt by using a generalized reciprocal theorem, and closed-form formulas for the translational and angular velocities of the colloidal sphere induced by the magnetohydrodynamic effect are obtained. The dipole and quadrupole moments of the zeta potential distribution over the particle surface cause the particle translation and rotation, respectively. The induced velocities of the particle are unexpectedly significant, and their dependence on the characteristics of the particle-fluid system is physically different from that for electromagnetophoretic particles or phoretic swimmers.  相似文献   

18.
We discuss the orientational properties of an oblate spheroidal hematite particle and also its influence on the rheological characteristics of a dilute suspension of these magnetic particles, by means of an analytical approach based on the orientational distribution function. A hematite particle with oblate spheroidal shape has an important characteristic; that is, it is magnetized in a direction normal to the particle axis. From the balance of the torques acting on a particle, we have developed the basic equation of the orientational distribution function. This basic equation has been numerically solved in order to investigate the dependence of the orientational distribution on the various factors. If both the magnetic field and the shear flow are weak, the particle does not exhibit specific directional characteristics. If the magnetic field is more dominant, the particle inclines such that the oblate surface is parallel to the magnetic field direction. If the shear flow becomes more dominant, the particle shows a sharper peak of the orientational distribution in the shear flow direction. The viscosity due to the magnetic torque increases and finally converges to a constant value as the magnetic field increases. In a sedimentation process under the gravitational field, the translational diffusion coefficient decreases with increasing magnetic field strength in the present case of the magnetic field direction.  相似文献   

19.
This study introduces an electrorheological (ER) approach that allows us to obtain remarkably enhanced ER properties by using monodisperse colloidal dimer particles. Two sets of colloidal particles, which are spheres and symmetric dimers, were synthesized employing the seeded polymerization technique. The aspect ratio of dimer particles was ~1.43. Then, the surface of the particles was coated with polyaniline by using the chemically oxidative polymerization method. After preparation of the particle suspensions having the same particle volume and concentration, their ER behavior was investigated with changing the electric field strength. At the same experimental condition, both shear stress and shear yield stress of the dimer particle suspension remarkably increased, compared with those of the spherical particle suspension. This attributes to the fact that the shape anisotropy of suspending particles effectively led to increase in the dipole moment under the electric field, thus resulting in formation of a well-structured colloidal chains between the electrodes.  相似文献   

20.
The polarizability of polymer-coated colloidal particles, as measured via dielectric relaxation spectroscopy, reflects on the degree to which convection, diffusion, and electromigration deform the equilibrium double layer. With a polymer coating, convection and electro-osmosis are resisted by hydrodynamic drag on the polymer segments. The electro-osmotic flow near the underlying bare surface is therefore diminished. Characteristics of the particles and the adsorbed polymer can, in principle, be inferred by measuring the frequency-dependent polarizability. In this work, "exact" numerical solutions of the electrokinetic equations are used to examine how adsorbed polymer changes the particle polarizability and, hence, the conductivity and dielectric constant increments of dilute suspensions. For neutral polymer coatings, the conductivity and dielectric constant increments are found to be very similar to those of the underlying bare particles, so the response depends mostly on the underlying bare particles. These observations suggest that dielectric spectroscopy is best used to determine the underlying surface charge, with characteristics of the coating inferred from the electrophoretic or dynamic mobility, together with the hydrodynamic radius obtained from sedimentation or dynamic light scattering. Addressed briefly are the effects of added counterions and nonspecific adsorption. The electrokinetic model explored in this work can be used to guide experiments (frequency and ionic strength, for example) to either minimize or maximize the sensitivity of the complex conductivity to the coating thickness or permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号