首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
A variational method of evaluating functional integrals is proposed. This method is used to investigate the asymptotic behavior of the scalar-particle Green functions in stochastic fields. The equations for the Green functions in Euclidean space in stochastic fields are written. The solutions of these equations are represented in the form of a functional integral and then they are averaged over Gaussian stochastic fields. The variational method formulated above is used to evaluate the asymptotic behavior of these Green functions. The following equations are considered in this paper: a stochastic contribution to the mass of a scalar particle, a gauge stochastic field, and a weak stochastic contribution to the flat metric of Euclidean space.  相似文献   

4.
General computational multibody system (MBS) algorithms allow for the linearization of the highly nonlinear equations of motion at different points in time in order to obtain the eigenvalue solution. This eigenvalue solution of the linearized equations is often used to shed light on the system stability at different configurations that correspond to different time points. Different MBS algorithms, however, employ different sets of orientation coordinates, such as Euler angles and Euler parameters, which lead to different forms of the dynamic equations of motion. As a consequence, the forms of the linearized equations and the eigenvalue solution obtained strongly depend on the set of orientation coordinates used. This paper addresses this fundamental issue by examining the effect of the use of different orientation parameters on the linearized equations of a gyroscope. The nonlinear equations of motion of the gyroscope are formulated using two different sets of orientation parameters: Euler angles and Euler parameters. In order to obtain a set of linearized equations that can be used to define the eigenvalue solution, the algebraic equations that describe the MBS constraints are systematically eliminated leading to a nonlinear form of the equations of motion expressed in terms of the system degrees of freedom. Because in MBS applications the generalized forces can be highly nonlinear and can depend on the velocities, a state space formulation is used to solve the eigenvalue problem. It is shown in this paper that the independent state equations formulated using Euler angles and Euler parameters lead to different eigenvalue solutions. This solution is also different from the solution obtained using a form of the Newton-Euler matrix equation expressed in terms of the angular accelerations and angular velocities. A time-domain solution of the linearized equations is also presented in order to compare between the solutions obtained using two different sets of orientation parameters and also to shed light on the important issue of using the eigenvalue analysis in the study of MBS stability. The validity of using the eigenvalue analysis based on the linearization of the nonlinear equations of motion in the study of the stability of railroad vehicle systems, which have known critical speeds, is examined. It is shown that such an eigenvalue analysis can lead to wrong conclusions regarding the stability of nonlinear systems.  相似文献   

5.
The fractional cable equation is studied on a bounded space domain. One of the prescribed boundary conditions is of Dirichlet type, the other is of a general form, which includes the case of nonlocal boundary conditions. In real problems nonlocal boundary conditions are prescribed when the data on the boundary can not be measured directly. We apply spectral projection operators to convert the problem to a system of integral equations in any generalized eigenspace. In this way we prove uniqueness of the solution and give an algorithm for constructing the solution in the form of an expansion in terms of the generalized eigenfunctions and three-parameter Mittag-Leffler functions. Explicit representation of the solution is given for the case of double eigenvalues. We consider some examples and as a particular case we recover a recent result. The asymptotic behavior of the solution is also studied.  相似文献   

6.
吴惠彬  梅凤翔 《物理学报》2015,64(23):234501-234501
本文研究事件空间中完整力学系统的梯度表示和分数维梯度表示, 建立系统的微分方程并将其表示为一阶形式, 给出系统成为梯度系统的条件以及成为分数维梯度系统的条件. 最后, 举例说明结果的应用.  相似文献   

7.
We propose a procedure for renormalizing the Casimir energy that makes the steps that are used in the standard renormalization procedure, that is, regularization, subtraction, and deregularization, implicit. The proposed procedure is based on the calculation of a set of convergent sums, each of which is related to the initial divergent sum of the non-renormalized Casimir energy. Next, we construct a system of linear equations that relates this set of convergent sums to the renormalized Casimir energy. The unknown renormalized Casimir energy is obtained as a result of solving this system of equations. In this case, both the calculations of the convergent sums and the subsequent solution of the system of linear equations are performed with a certain (generally speaking, arbitrary) ordered accuracy; thus, the result is also approximate. The proposed procedure is, first, more computationally effective than the standard one, and, second, applicable not only to the problems where a transcendental equation for the spectrum can be written, but also to the problems where the spectrum is known only numerically.  相似文献   

8.
For a system of three charged particles the Faddeev equations are derived in the total-angular-momentum representation. They have the form of coupled sets of partial differential equations in three-dimensional space and can be used to develop new efficient numerical procedures to tackle the three-body Coulomb problem. The asymptotic conditions at large distances corresponding both to binary scattering and bound-state problems are presented. The behaviour of the Faddeev components near the triple and double collision points is studied.  相似文献   

9.
在晶体光轴垂直于入射面的各向异性实验组态下,对掺杂KNSBN晶体的各向异性自衍射过程进行了理论分析和实验观测,给出了包含空间电荷场前两阶分量作用的各向异性自衍射的耦合波方程及其数值解。理论分析和实验结果都表明各向异性自衍射光来自于两束入射光的共同作用。  相似文献   

10.
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus.Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium-torus bifurcation curve.  相似文献   

11.
In a parameterized three-dimensional system of autonomous differential equations, a T-point is a point of the parameter space where a special kind of codimension-2 heteroclinic cycle occurs. If the parameter space is three-dimensional, such a bifurcation is located generically on a curve. A more degenerate scenario appears when this curve reaches a surface of Hopf bifurcations of one of the equilibria involved in the heteroclinic cycle. We are interested in the analysis of this codimension-3 bifurcation, which we call T-point-Hopf. In this work we propose a model, based on the construction of a Poincaré map, that describes the global behavior close to a T-point-Hopf bifurcation. The existence of certain kinds of homoclinic and heteroclinic connections between equilibria and/or periodic orbits is proved. The predictions deduced from this model strongly agree with the numerical results obtained in a modified van der Pol-Duffing electronic oscillator.  相似文献   

12.
We provide a covariant, coordinate-free formulation of the many-dimensional Klein-Kramers equation for the phase space distribution of a Brownian particle. We construct a complete set of eigenfunctions of the collision operator adapted to the coordinate system, which involve covariant tensorial Hermite polynomials. The Klein-Kramers equation can then be reformulated as a system of coupled equations for the expansion coefficients with respect to this system. Truncation of this system of moment equations and application of a subsidiary condition yields a covariant generalization of Grad's thirteen-moment equations. As an application we give the explicit form of these equations for spherically symmetric, stationary solutions in spherical coordinates. We briefly comment on possible extensions of our treatment to slightly more complicated cases.  相似文献   

13.
Uncertainty analysis near bifurcation of an aeroelastic system   总被引:1,自引:0,他引:1  
Variations in structural and aerodynamic nonlinearities on the dynamic behavior of an aeroelastic system are investigated. The aeroelastic system consists of a rigid airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We follow two approaches to determine the effects of variations in the linear and nonlinear plunge and pitch stiffness coefficients of this aeroelastic system on its stability near the bifurcation. The first approach is based on implementation of intrusive polynomial chaos expansion (PCE) on the governing equations, yielding a set of nonlinear coupled ordinary differential equations that are numerically solved. The results show that this approach is capable of determining sensitivity of the flutter speed to variations in the linear pitch stiffness coefficient. On the other hand, it fails to predict changes in the type of the instability associated with randomness in the cubic stiffness coefficient. In the second approach, the normal form is used to investigate the flutter (Hopf bifurcation) boundary that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing LCO. The results show that this mathematical approach provides detailed aspects of the effects of the different system nonlinearities on its dynamic behavior. Furthermore, this approach could be effectively used to perform sensitivity analysis of the system's response to variations in its parameters.  相似文献   

14.
张素侠  陈纬庭 《物理学报》2018,67(6):60201-060201
研究选取合适的准坐标简化完整系统Boltzmann-Hamel方程的问题.基于流形上的标架场理论,指出了定常构形空间中的准速度与标架场的联系,并从几何不变性的角度上导出了完整系统的Boltzmann-Hamel方程.证明了对于任意广义力为零的均匀构形空间、广义力不为零的零曲率构形空间,Boltzmann-Hamel方程均可以化简为可积分的形式,同时给出具体的简化方法并举例说明本方法的适用性.本文方法为寻找运动方程的解析解提供了一条新途径.  相似文献   

15.
16.
We develop new high-order accurate upwind schemes for the wave equation in second-order form. These schemes are developed directly for the equations in second-order form, as opposed to transforming the equations to a first-order hyperbolic system. The schemes are based on the solution to a local Riemann-type problem that uses d’Alembert’s exact solution. We construct conservative finite difference approximations, although finite volume approximations are also possible. High-order accuracy is obtained using a space-time procedure which requires only two discrete time levels. The advantages of our approach include efficiency in both memory and speed together with accuracy and robustness. The stability and accuracy of the approximations in one and two space dimensions are studied through normal-mode analysis. The form of the dissipation and dispersion introduced by the schemes is elucidated from the modified equations. Upwind schemes are implemented and verified in one dimension for approximations up to sixth-order accuracy, and in two dimensions for approximations up to fourth-order accuracy. Numerical computations demonstrate the attractive properties of the approach for solutions with varying degrees of smoothness.  相似文献   

17.
We analyse dark energy models where self-interacting three-forms or phantom fields drive the accelerated expansion of the Universe. The dynamics of such models is often studied by rewriting the cosmological field equations in the form of a system of autonomous differential equations, or simply a dynamical system. Properties of these systems are usually studied via linear stability theory. In situations where this method fails, for instance due to the presence of zero eigenvalues in the Jacobian, centre manifold theory can be applied. We present a concise introduction and show explicitly how to use this theory in two concrete examples.  相似文献   

18.
Statistical properties of classical random processes are considered in the tomographic representation. The Radon integral transform is used to construct the tomographic form of the kinetic equations. The relationship between the probability density on the phase space for classical systems and the tomographic probability distribution is elucidated. Examples of simple kinetic equations like the Liouville equations for one and many particles are studied in detail.  相似文献   

19.
《Physics letters. A》1987,121(7):371-379
The principle of least time is given a precise mathematical formulation in the new context of stochastic processes, where it is referred to as “optimal network kinetics”: In situations influenced by natural selection the efficient processes take place along optimal reaction coordinate paths, which in complex systems may form a network by bifurcations. The optimal paths in the configuration space of the system are defined by monimizing the time scale associated with an individual path in the set of all possible paths, subject to given boundary conditions. In particular it is discussed how optimal paths may be the consequence of detailed balance, which incorporates into the structure of the stochastic matrix of the system a local bias against excessive energy expenditure. Hence the optimal path depends on the configuration space (potential-) energy surface as well as on the temperature, for instance according to the law of Arrhenius at the crossing of a barrier along a reaction coordinate passing through the saddle-points. Exact formulations are given for disordered structures, including the case of variable range hopping conduction, where we obtain an exact derivation of the law of Mott. A variational formulation is given for processes corresponding to classical diffusion on a multidimensional energy surface. The corresponding differential equations defining the optimal path in this space have the form of newtonian equations of motion. However, the situation implies an interesting teleological aspect, which is unlike anything known from conventional dynamics. In order to be capable of crossing energy barriers the point tracing out the optimal path between given endpoints adjusts its mass so that both positive and negative values permit it to go along with, as well as against the locally acting force (the conventional gradient of the energy surface). At any point the appropriate mass, and hence the acceleration that is derived from the force at the current location, depends in a definite way on the entire path that is ultimately going to be completed.  相似文献   

20.
张毅 《中国物理 B》2008,17(12):4365-4368
For a Birkhoffian system in the event space, this paper presents the Routh method of reduction. The parametric equations of the Birkhoffian system in the event space are established, and the definition of cyclic coordinates for the system is given and the corresponding cyclic integral is obtained. Through the cyclic integral, the order of the system can be reduced. The Routh functions for the Birkhoffian system in the event space are constructed, and the Routh method of reduction is successfully generalized to the Birkhoffian system in the event space. The results show that if the system has a cyclic integral, then the parametric equations of the system can be reduced at least by two degrees and the form of the equations holds. An example is given to illustrate the application of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号