首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been reported that the addition of low concentrations of ionic surfactants enhances the steady-state sonoluminescence (SL) intensity relative to water (Ashokkumar; et al. J. Phys. Chem. B 1997, 101, 10845). In the current study, both sonoluminescence and passive cavitation detection (PCD) were used to examine the acoustic cavitation field generated at different acoustic pulse lengths in the presence of an anionic surfactant, sodium dodecyl sulfate (SDS). A decrease in the SL intensity was observed in the presence of low concentrations of SDS and short acoustic pulse lengths. Under these conditions, the inhibition of bubble coalescence by SDS leads to a population of smaller bubbles, which dissolve during the pulse "off time". As the concentration of surfactant was increased at this pulse length, an increase in the acoustic cavitation activity was observed. This increase is partly attributed to enhanced growth rate of the bubbles by rectified diffusion. Conversely, at long pulse lengths acoustic cavitation activity was enhanced at low SDS concentrations as a larger number of the smaller bubbles could survive the pulse "off time". The effect of reduced acoustic shielding and an increase in the "active" bubble population due to electrostatic repulsion between bubbles are also significant in this case. Finally, as the surfactant concentration was increased further, the effect of electrostatic induced impedance shielding or reclustering dominates, resulting in a decrease in the SL intensity.  相似文献   

2.
A theoretical model for the dynamic surface tension of an air bubble expanding in micellar surfactant solution is proposed. The model accounts for the effect of expansion of the bubble surface during the adsorption of surfactant molecules (monomers) and the effect of disintegration of polydisperse micelles on the surfactant diffusion. Assuming small deviations from equilibrium and constant rate of expansion analytical expression for the surface tension and the subsurface concentration of monomers as a function of time is derived. The characteristic time of micellization is computed from the experimental data for two surfactants (sodium dodecyl sulfate and nonylphenol polyglycol ether) obtained by the maximum bubble pressure method.  相似文献   

3.
The effect of alcohols on the initial growth of the multibubble sonoluminescence (MBSL) intensity in aqueous solutions has been investigated. With increasing concentrations of the alcohols, the number of pulses required to grow the MBSL intensity to a steady state (N(crit)) increases (relative to that of water) initially to a maximum for all the alcohols used in this study, followed by a decrease for methanol and ethanol. The cause of the initial increase in N(crit) is attributed to the inhibition of bubble coalescence in the system. This inhibition in bubble coalescence results in a population of bubbles with a smaller size range and thus a larger number of pulses is required to grow the bubbles to their sonoluminescing size range. It is suggested that the decrease in the N(crit) at higher alcohol concentrations may be caused by an increase in the bubble growth by rectified diffusion.  相似文献   

4.
The application of pulsed ultrasound for the degradation of the nonvolatile surfactants sodium 4-octylbenzene sulfonate (OBS) and sodium dodecylbenzenesulfonate (DBS) was investigated at a frequency of 354 kHz. By comparing the degradation rate constants with those of continuous wave (CW) ultrasound, observed pulse enhancements were found to be dependent on the pulse length, pulse ratio, initial concentration, and surface activity of the surfactants. For a pulse length of 100 ms and a pulse ratio of 1:1 (equal on/off times), the degradation rate constant of 1 mM OBS was nearly twice the value for CW. Furthermore, the degradation rate constant for 1 mM DBS increased significantly when sonicated under a pulse length of 100 ms and a pulse on/off ratio of 1:50. However, the degradation rate of 0.1 mM OBS increased by only 30% with a 100 ms pulse length and pulse ratio of 1:1 as compared to CW, indicating concentration dependence. The enhanced degradation of surfactants by pulsed ultrasound was attributed to the accumulation of surfactants on cavitation bubble surfaces. In addition, as compared to shorter pulse intervals, longer pulse intervals enhanced DBS degradation, indicating that DBS, a more surface active compound, accumulated and equilibrated with the bubble interface more slowly.  相似文献   

5.
The effect of varying the applied acoustic power on the extent to which the addition of water-soluble solutes affect the intensity of aqueous multibubble sonoluminescence (MBSL) has been investigated. Under most of the experimental conditions used, the addition of aliphatic alcohols to aqueous solutions was found to suppress the MBSL intensity, although an enhancement of the MBSL intensity was also observed under certain conditions. In contrast, the presence of an anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solutions generally enhanced the observed MBSL intensity. For a series of aliphatic alcohols and SDS, a strong dependence of the MBSL intensity on the applied acoustic power (in the range of 0.78-1.61 W/cm(2)) at 358 kHz was observed. The relative SL quenching was significantly higher at higher acoustic powers for the alcohol solutions, whereas the relative SL enhancement was lower at higher acoustic powers in SDS solutions. These observations have been interpreted in terms of a combination of material evaporation into the bubble, rectified diffusion, bubble clustering and bubble-bubble coalescence.  相似文献   

6.
The degradation of nonvolatile surfactants sodium 4-octylbenzene sulfonate (OBS) and dodecylbenzenesulfonate (DBS) and a nonvolatile nonsurfactant 4-ethylbenzene sulfonic acid (EBS), as single components and binary mixtures, were studied under 354 kHz ultrasound. In addition, the effects of pulsed ultrasound on degradation were also examined. Results show that in mixtures of the surfactant OBS and nonsurfactant EBS, the surfactant is selectively degraded. The reduced degradation of EBS was dependent on the mixed molar ratio of EBS/OBS. The degradation of OBS was unaffected by the presence of EBS at a molar ratio of OBS/EBS > or = 1. Furthermore, OBS degradation was significantly enhanced under pulsed ultrasound. In OBS and DBS surfactant mixtures sonicated under pulsed ultrasound, surfactants strongly affected each other's degradation rates due to competition for the reaction sites on the cavitation bubble surfaces. OBS exhibits a faster degradation rate than DBS at shorter pulse intervals due to its faster rate of transfer to the cavitation bubble interfaces. At longer pulse intervals, DBS, which is more surface active, degrades faster than OBS due to the increased amounts of DBS accumulation on the bubble surfaces.  相似文献   

7.
A theoretical model for the dynamic surface tension of an air bubble expanding in surfactant solution is proposed. The model accounts for the effect of convection on the surfactant diffusion and the effect of expansion of the bubble surface during the adsorption of surfactant molecules. Assuming small deviation from equilibrium and constant rate of expansion, an analytical solution for the surface tension and the subsurface concentration as a function of time is derived. The parameters of the model are computed from experimental data for sodium dodecyl sulfate obtained by the maximum bubble pressure method.  相似文献   

8.
Sulfur is an important element has many practical applications when present as nanoparticles. Despite the practicable applications, limited studies are available in the literature related to synthesis of sulfur nanoparticles. Growth kinetics of colloidal sulfur particles synthesized from aqueous solutions using different surfactants have been studied here. The effects of different parameters such as reactant concentration, temperature, sonication, types of acids, types of surfactants, and even surfactant concentration are studied on the growth kinetics. Since the reaction rate is fast, particle growth depends on the parameters which affect diffusion of sulfur molecules. There is a linear relationship found among the reactant concentration and the particle coarsening rate constant. The growth kinetics was studied in the presence of different surfactants such as nonionic (poly(oxyethylene) p-tert-octylphenyl ether, TX-100), anionic (sodium dodecylbenzene sulfonate, SDBS), cationic (cetyltrimethyammonium bromide, CTAB) and results show the coarsening constant changes according to the following order: water>TX-100>SDBS>CTAB. The particle growth rate also depends on the surfactant concentration, coarsening rate constant decreases with the increase in surfactant concentration and become constant close to the critical micellar concentration (CMC). The coarsening rate constant also highly depends on the types of acid used as catalyst.  相似文献   

9.
General theory of nonstationary diffusion growth of gas bubble in the supersaturated solution of gas in liquid is constructed using the ideas of similarity and self-similar solutions. The balance between the number of gas molecules in solution and in the bubble that displaces incompressible liquid solvent with an increase in bubble size is taken into account at the material isolation of the solution and the bubble. The dependences of the rate of growth of bubble radius on the solubility of gas and the supersaturation of solution are found. The nonstationary effect of a rapid increase in the rate of bubble growth with an increase in the product of gas solubility and solution supersaturation is elucidated. The upper limit of this product at which bubble growth can be considered as isothermal process is established. The theory is constructed at the arbitrary gas solubility.  相似文献   

10.
The effect of the micelles on the dynamic surface tension of micellar surfactant solutions is studied experimentally by means of the maximum bubble pressure method. Different frequencies of bubbling ranging approximately between 1 and 30 s–1 are applied. The time dependence of the surface tension is calculated using a dead time correction. Water solutions of two types of surfactants with different concentrations are investigated: sodium dodecyl sulfate and nonylphenol polyglycol ether. The surface tension relaxes more quickly in the presence of micelles. The characteristic times of relaxation of the surface tension seem to be in the millisecond range. The time constants observed experimentally are explained in terms of the theory of surfactant diffusion affected by micellization kinetics.  相似文献   

11.
Influence of surfactant on gas bubble stability   总被引:2,自引:0,他引:2  
Gas-bubble stability is achieved either by a reduction in the Laplace pressure or by a reduction in the permeability of the gas-liquid interface. Although insoluble surfactants have been shown definitively in many studies to lower the permeability of the gas-liquid interface and hence increase the resistance to interfacial mass transfer, remarkably little work has been done on the effects of soluble surfactants. An experimental system was developed to measure the effect of the soluble surfactant dodecyl trimethylammonium bromide on the desorption and absorption of carbon dioxide gas through a quiescent planar interface. The desorption experiments conformed to the model of non-steady-state molecular diffusion. The absorption experiments, however, produced an unexpected mass transfer mechanism, with surface renewal, probably because of instability in the density gradient formed by the carbon dioxide. In general, the soluble surfactant produced no measurable reduction in the rate of interfacial mass transfer for desorption or absorption. This finding is consistent with the conclusion of Caskey and Barlage that soluble surfactants produce a significantly lower resistance to interfacial mass transfer than do insoluble surfactants. The dynamic adsorption and desorption of the surfactant molecules at the gas-liquid interface creates short-term vacancies, which presumably permit the unrestricted transfer of the gas molecules through the interface. This surfactant exchange does not occur for insoluble surfactants. Gas bubbles formed in the presence of a high concentration of soluble surfactant were observed to dissolve completely, while those formed in the presence of the insoluble surfactant stearic acid did not dissolve easily, and persisted for very long periods. The interfacial concentration of stearic acid rises during bubble dissolution, as it is insoluble, and must eventually achieve full monolayer coverage and a state of compression, lowering the permeability of the interface. Thus, insoluble surfactants or hydrophobic impurities from solid surfaces may account for increased bubble stability.  相似文献   

12.
Contamination has previously been invoked to explain the flat shape and the long lifetimes of interfacial nanobubbles (INBs). In this study, the effects of surfactants on the formation and the stability of INBs were investigated when surfactants were added to the system before, during, and after the standard solvent exchange procedure (SSEP) for the formation of INBs. The solutions of sodium dodecyl sulfate (SDS) above critical micelle concentration were found to have little effect on the bubble stability. Likewise, cleaning of the substrate with a surfactant solution had little effect. In contrast, addition of a water-insoluble surfactant during the formation dramatically reduced the INBs. Finally, repeated application of SSEP to surfactant-coated substrates progressively rinsed the surfactant off the system. Thus, we found no evidence to support the hypothesis that (1) INBs are stabilized by a layer of insoluble organic contaminant or that (2) SSEP introduces surface-active materials to the system that could stabilize INBs.  相似文献   

13.
The sorption and diffusion processes of anionic surfactants with different chain length through polyacrylamide hydrogels with low swelling degree have been studied by electrical conductivity measurements. The multicomponent equilibrium equation has been used to model the sorption isotherms of different anionic surfactant in the hydrogels. Such isotherms show that initial rapid sorption of unimer surfactant into the membranes occurs, suggesting that non-freezing water can be involved in these interactions. In aqueous solution, at concentrations near and above the critical micelle concentration an anti-co-operative region is found. The diffusion coefficients of the anionic surfactants inside the hydrogel matrix show that the mobility of diffusing surfactant entities is dependent on cross-linker concentration and chain length. The Cukier hydrodynamic model and the free volume theory as modified by Peppas and Reinhart were applied to explain the dependence of the diffusion coefficients of surfactant on surfactant concentration inside the hydrogel. The hydrodynamic model was applied with success to the more hydrophilic surfactant, sodium 1-octanesulfonate, showing that the diffusion coefficients, D, increase when the resistance to hydrodynamic medium decreases; when the surfactant chain length increases (sodium dodecyl sulfate and sodium 1-hexadecane sulphonate) the variation of D with the free volume can only be understood considering the sieving effect produced by the surfactant inside gel.  相似文献   

14.
The effect of adding surface-active solutes to water being insonated at 515 kHz has been investigated by monitoring the acoustic emission from the solutions. At low concentrations (<3 mM), sodium dodecyl sulfate causes marked changes to the acoustic emission spectrum which can be interpreted in terms of preventing bubble coalescence and declustering of bubbles within a cavitating bubble cloud. By conducting experiments in the presence of background electrolytes and also using non-ionic surfactants, the importance of electrostatic effects has been revealed. The results provide further mechanistic evidence for the interpretation of the effect of surface-active solutes on acoustic cavitation and hence on the mechanism of sonochemistry. The work will be valuable to many researchers in allowing them to optimize reaction and process conditions in sonochemical systems.  相似文献   

15.
利用MPTC型气泡压力张仪研究了十二烷基硫酸钠(SDS)溶液在不同NaCl 浓度下的动态表面吸附性质, 分析了离子型表面活性剂在表面吸附层和胶束中形成双电层结构产生表面电荷对动态表面扩散过程和胶束性质的影响. 结果表明, SDS在表面吸附过程中, 表面电荷的存在会产生5.5 kJ·mol-1的吸附势垒(Ea), 显著降低十二烷基硫酸根离子(DS-)的有效扩散系数(Deff). 十二烷基硫酸根离子的有效扩散系数与自扩散系数(D)的比值(Deff/D)仅为0.013, 这表明SDS与非离子型表面活性剂不同, 在吸附初期为混合动力控制吸附机制. 加入NaCl可以降低吸附势垒. 当加入不小于80 mmol·L-1 NaCl后, Ea小于0.3 kJ·mol-1, Deff/D在0.8-1.2之间, 表现出与非离子型表面活性剂相同的扩散控制吸附机制. 同时, 通过分析SDS胶束溶液的动态表面张力获得了表征胶束解体速度的常数(k2). 发现随着NaCl 浓度的增大, k2减小, 表明SDS胶束表面电荷的存在会增加十二烷基硫酸根离子间的排斥力, 促进胶束解体.  相似文献   

16.
The effects of the surfactants l-menthol, dl-camphor and thymol on the faradaic reduction processes of Pb(II) and Cd(II) in sodium nitrate have been studied. The diffusion currents decrease in the presence of these surfactants and deceleration of the electrode process is observed which is substantiated by the data fromi-t curves and cyclic voltammograms. Reduction appears to be quasireversible and the rate constants have been evaluated byGellings' method.

Mit 4 Abbildungen  相似文献   

17.
The purpose of this work is to study the self-assembling of some synthesized thiol surfactants namely (mercaptopropane-, mercaptohexane-, mercaptooctane-, and mercaptodecane sodium sulfonate) on the fabricated gold nanoparticles. The self-assembling of these surfactants on gold nanoparticles characterized using different techniques such as FTIR spectroscopy, UV spectroscopy, and transmission electron microscopy (TEM). Spectroscopic evidence suggests that the synthesized thiol surfactants have been attached to the gold nanoparticles. The effect of self-assembling of these surfactants on the size of the gold nanoparticles was studied using TEM images. The growth of the gold nanoparticles was investigated with respect to the increase of alkyl chain in the synthesized thiol surfactants. The results show that the stabilization of gold nanoparticles was affected by the increase in alkyl chain length of these surfactants. The effect of gold nanoparticles on the interfacial tension and the emulsion stability of these surfactants with crude oil was studied.  相似文献   

18.
Adsorption of various surfactants at the gas liquid interface is studied with equilibrium and dynamic surface tension measurements. The Wilhelmey plate method and maximum bubble pressure method are used for this study. Dynamic surface tension of solutions of different surfactants, sodium lauryl sulfate (SLS), polyoxyethylene glycol 4‐tert‐octyl phenyl ether (Triton X 100), poly‐oxyethylene(20) cetyl ether (Brij 58), and tetraethylene glycol mono‐n‐dodecyl ether (Brij 30), is measured at different concentrations. Adsorption of different surfactants is compared on the basis of equilibrium and dynamic behavior. Effectiveness and efficiency of different surfactants is found from equilibrium surface tension measurement. A new parameter is defined to quantify the dynamic behavior of adsorption, which gives the concentration of surfactant needed to reduce surface tension to half of its maximum reduction within a defined time available for adsorption. The dynamics of surfactant solution is quantified by using this parameter.  相似文献   

19.
When bubbles rise through a liquid they are known to scavenge dissolved surface-active materials (surfactants). Small bubbles in the size range of tens of micrometers quickly become covered with surfactants in any but the cleanest conditions. This has the effect of immobilizing the bubble surface and affecting the drag and therefore the bubble rise speed. A large number of bubbles rising as a cloud toward a free surface will populate the bulk surface with surfactants at a richness that far exceeds that which would occur in the absence of bubbling. However, in addition to the increased deposition of surfactants on the bulk surface, the random and agitated motions of the rising bubbles induce mixing of the liquid. In a companion paper (R. L. Stefan and A. J. Szeri, submitted for publication) the mixing properties of a bubble cloud rising toward a free surface were determined. In the present work, a model for the uptake of surfactants by bubbles and subsequent deposition on the bulk surface is developed including the crucial feature of bubble-induced fluid mixing. It is found that the mixing of desorbed surfactant down into the bulk is key to predicting what will be the enrichment of the bulk surface. Copyright 1999 Academic Press.  相似文献   

20.
Foamed poly(vinyl alcohol) (PVA) cryogels are studied. Such heterogeneous gel composites are formed as a result of the cryogenic treatment (freezing—storage in a frozen state—thawing) of water— PVA liquid foams in the absence and presence of surfactants. It is shown that the addition of ionic and nonionic surfactants to an aqueous PVA solution and its subsequent foaming result in the formation of liquid foam whose stability is lower than that of the foam prepared from an aqueous PVA solution in the absence of surfactant, i.e., surfactants cause a destabilizing effect on the foams containing PVA. Gas-filled PVA cryogels formed as a result of freezing—thawing of such foams contain large (up to ~180 μm) pores (air bubbles incorporated into the matrix of heterogeneous gel). Mechanical and thermal properties of cryogels depend on the nature and concentration of surfactants, as well as on the regime of cryogenic treatment. The rigidity of foamed PVA cryogels prepared in the presence of sodium dodecyl sulfate and cetyltrimethylammonium bromide ionic surfactants is lower and that in the presence of nonionic decaoxyethylene cetyl ether is higher than for equiconcentrated (by the polymer) foamed PVA cryogel containing no surfactant. Microscopic studies and the analysis of obtained images of cryogel structure demonstrate that the effect of surfactant on the morphology of freezing foam can be different, depending on the type of surfactant added to the initial system. This leads to foam-destabilizing effects such as the collapse, deformation, and coalescence of air bubbles; the failure of gel phase structure near the bubble surface; etc. However, the complete disintegration of the foamed structure is prevented by a very high viscosity of the unfrozen liquid microphase of a macroscopically solid sample and by the cryotropic PVA gelation that fixes the structure of partially destroyed foam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号