首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete catalytic reaction course for the organolanthanide-mediated intermolecular hydroamination of 1,3-butadiene and n-propylamine by an archetypical [Me2Si(eta5-Me4C5)2NdCH(SiMe3)2] precatalyst was critically scrutinized by employing a reliable gradient-corrected DFT method. A free-energy profile of the overall reaction is presented that is based on the thorough characterization of all crucial elementary steps for a tentative catalytic cycle. A computationally verified, revised mechanistic scenario is proposed which is consistent with the experimentally derived empirical rate law and accounts for crucial experimental observations. It involves kinetically mobile reactant association/dissociation equilibria and facile, reversible intermolecular diene insertion into the Nd-amido bond, linked to turnover-limiting protonolysis of the eta3-butenyl-Nd functionality. The computationally predicted effective kinetics (Delta(tot) = 11.3 kcal mol(-1), Delta(tot) = -35.7 e.u.) are in reasonably good agreement with experimental data for the thoroughly studied hydroamination of alkynes. The thermodynamic and kinetic factors that determine the almost complete regio- and stereoselectivity of the mechanistically diverse intermolecular 1,3-diene hydroamination have been unraveled. The present computational study complements experiments because it allows, first, a more detailed understanding and a consistent rationalization of the experimental results for the hydroamination of 1,3-dienes and primary amines and, second, enhances the insights into general mechanistic aspects of organolanthanide-mediated intermolecular hydroamination.  相似文献   

2.
The complete catalytic reaction course for the organolanthanide-assisted intramolecular hydroamination/cyclization (IHC) of 4,5-heptadien-1-ylamine by a prototypical [(eta(5)-Me5C5)2LuCH(SiMe3)2] precatalyst has been critically scrutinized by employing a reliable DFT method. A computationally verified mechanistic scenario for the IHC of 1,3-disubstituted aminoallene substrates has been proposed that is consistent with the empirical rate law determined by experiment and accounts for crucial experimental observations. It involves kinetically rapid substrate association and dissociation equilibria, facile and reversible intramolecular allenic C=C insertion into the Ln-N bond, and turnover-limiting protonation of the azacycle's tether functionality, with the amine-amidoallene-Ln adduct complex representing the catalyst's resting state. This mechanistic scenario bears resemblance to the mechanism that has been recently proposed in a computational exploration of aminodiene IHC. The unique features of the IHC of the two substrate classes are discussed. Furthermore, the thermodynamic and kinetic factors that control the regio- and stereoselectivity of aminoallene IHC have been elucidated. These achievements have provided a deeper insight into the catalytic structure-reactivity relationships in organolanthanide-assisted cyclohydroamination of unsaturated C-C functionalities.  相似文献   

3.
The complete sequence of steps of a tentative catalytic cycle for intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical cationic [Cp(2)ZrCH(3)](+) zirconocene precatalyst (2) has been examined by employing a gradient-corrected DFT method. The predicted smooth overall reaction energy profile is consistent with the available experimental data, thereby providing further confidence in the proposed mechanism. Following activation of the precatalyst by protonolytic cleavage of the Zr-Me bond, the catalytically active amidoallene-Zr complex undergoes addition of an allenic C[double bond, length as m-dash]C linkage across the Zr-N sigma-bond. The alternative exo- and endocyclic pathways show similar probabilities for the sterically less encumbered reactants {1 + 2} investigated herein. However, steric factors are expected to exert control on the regioselectivity of ring closure. On the other hand, the metathesis-type transition states for subsequent protonolysis are indicated to be less sensitive to steric demands. Formation of the six-membered azacycle-Zr intermediate through intramolecular C[double bond, length as m-dash]C insertion into the Zr-N sigma-bond is predicted to be turnover limiting. The factors that govern the regioselectivity of the aminoallene IHC have been elucidated.  相似文献   

4.
The present computational mechanistic study explores comprehensively the organoactinide‐mediated intramolecular hydroamination/cyclisation (IHC) of aminodienes by employing a reliable DFT method. All the steps of a plausible catalytic reaction course have been scrutinised for the IHC of (4E,6)‐heptadienylamine 1 t by [(CGC)Th(NMe2)2] precatalyst 2 (CGC=[Me2Si(η5‐Me4C5)(tBuN)]2?). For each of the relevant elementary steps the most accessible pathway has been identified from a multitude of mechanistic possibilities. The operative mechanism involves rapid substrate association/dissociation equilibria for the 3 t ‐S resting state and also for azacyclic intermediates 4 a , 4 s , easily accessible and reversible exocyclic ring closure, supposedly facile isomerisation of the azacycle’s butenyl tether prior to turnover‐limiting protonolysis. The following aspects are in support of this scenario: 1) the derived rate law is consistent with the experimentally obtained empirical rate law; 2) the accessed barrier for turnover‐limiting protonolysis does agree remarkably well with observed performance data; 3) the ring‐tether double‐bond selectivity is consistently elucidated, which led to predict the product distribution correctly. This study provides a computationally substantiated rationale for observed activity and selectivity data. Steric demands at the CGC framework appear to be an efficient means for modulating both performance and ring‐tether double‐bond selectivity. The careful comparison of (CGC)4f‐element and (CGC)5f‐element catalysts revealed that aminodiene IHC mediated by organoactinides and organolanthanides proceeds through a similar mechanistic scenario. However, cyclisation and protonolysis steps, in particular, feature a markedly different reactivity pattern for the two catalyst classes, owing to enhanced bond covalency of early actinides when compared to lanthanides.  相似文献   

5.
The mechanism of the fluoride-free, palladium-catalyzed cross-coupling reaction of potassium (E)-heptenyldimethylsilanolate, K(+)(E)-1(-), with 2-iodothiophene has been investigated through kinetic analysis. The order of each component was determined by plotting the initial rates of the reaction against concentration. These data provided a mechanistic picture which involves a fast and irreversible oxidative insertion of palladium into the aryl iodide and a subsequent intramolecular transmetalation step from a complex containing a silicon-oxygen-palladium linkage. First-order behavior at low concentrations of silanolate with excess palladium(0) complex supports the formation of this complex as the turnover-limiting step. The change to zeroth-order dependence on silanolate at high concentrations is consistent with the intramolecular transmetalation becoming the turnover-limiting step.  相似文献   

6.
The complete catalytic cycle for the intramolecular hydroamination/cyclisation (IHC) of 4,5-hexadien-1-ylamine (1) by a prototypical [ZrCp(2)Me(2)] precatalyst (2) has been scrutinized by employing a reliable DFT method. The present study conducted by means of a detailed computational characterisation of structural and energetic aspects of alternative pathways for all of the relevant elementary steps complements the mechanistic insights revealed from experimental results. The operative mechanism entails an initial transformation of precatalyst 2 into the thermodynamically prevalent, but dormant, bis(amido)-Zr compound in the presence of aminoallene 1. This complex undergoes a reversible, rate-determining alpha-elimination of 1 to form the imidoallene-Zr complex. The substrate-free form, which contains a chelating imidoallene functionality, is the catalytically active species and is rapidly transformed into azazirconacyclobutane intermediates through a [2+2] cycloaddition reaction. This highly facile process does not proceed regioselectively because the alternative pathways for the formation of five- and six-membered azacycles have comparable probabilities. Degradation of cyclobutane intermediates by following the most feasible pathway occurs through protonolysis of the metallacycle moiety and subsequent proton transfer from the Zr-NHR moiety onto the azacycle. The five-membered allylamine is generated through protonation at carbon atom C(6) followed by alpha-hydrogen elimination, whereas protonolysis of the cyclobutane moiety at the Zr-N bond followed by proton transfer onto carbon atom C(5) is the dominant route for the six-membered product. Of the two consecutive proton transfer steps, the second one determines the overall kinetics of the entire protonation sequence. This process is predicted to be substantially slower than the cycloaddition reaction. The factors that regulate the composition of the cycloamine products have been elucidated.  相似文献   

7.
Organolanthanide complexes of the general type Cp'(2)LnE(TMS)(2) (Cp' = eta(5)-Me(5)C(5); Ln = La, Sm, Y, Lu; E = CH, N; TMS = SiMe(3)) serve as effective precatalysts for the rapid intramolecular hydrophosphination/cyclization of the phosphinoalkenes and phosphinoalkynes RHP(CH(2))(n)()CH=CH(2) (R = Ph, H; n = 3, 4) and H(2)P(CH(2))(n)C triple bond C-Ph (n = 3, 4) to afford the corresponding heterocycles and respectively. Kinetic and mechanistic data for these processes exhibit parallels to, as well as distinct differences from, organolanthanide-mediated intramolecular hydroamination/cyclizations. The turnover-limiting step of the present catalytic cycle is insertion of the carbon-carbon unsaturation into the Ln-P bond, followed by rapid protonolysis of the resulting Ln-C linkage. The rate law is first-order in [catalyst] and zero-order in [substrate] over approximately one half-life, with inhibition by heterocyclic product intruding at higher conversions. The catalyst resting state is likely a lanthanocene phosphine-phosphido complex, and dimeric [Cp'(2)YP(H)Ph](2) was isolated and cystallographically characterized. Lanthanide identity and ancillary ligand structure effects on rate and selectivity vary with substrate unsaturation: larger metal ions and more open ligand systems lead to higher turnover frequencies for phosphinoalkynes, and intermediate-sized metal ions with Cp'(2) ligands lead to maximum turnover frequencies for phosphinoalkenes. Diastereoselectivity patterns also vary with substrate, lanthanide ion, and ancillary ligands. Similarities and differences in hydrophosphination vis-à-vis analogous organolanthanide-mediated hydroamination are enumerated.  相似文献   

8.
The intramolecular (3 + 2) cycloaddition of alkenylidenecyclopropanes to alkenes under palladium catalysis provides a practical and stereoselective entry into a variety of interesting bicycles. The reaction outcome and stereoselectivity of the process are somewhat dependent on the characteristics of the substrate and of the palladium ligand, which is not easy to justify on the basis of the current mechanistic understanding. We therefore decided to study the different mechanistic alternatives from a theoretical point of view. The energies of the reaction intermediates and transition states for different possible pathways have been explored at DFT level in a model system, and using PH(3) and P(OMe)(3) as ligands. The results obtained suggest that the most favourable reaction pathway involves an initial oxidative addition of Pd(0) at the distal position of the cyclopropane to afford a palladacyclobutane intermediate. The evolution of this intermediate into the final cycloadduct can occur following different paths, the most favorable depending on the configuration and substitution of the alkene cycloaddition partner, and the number of ancillary ligands coordinated to Pd. The computational results are consistent with the experimental observations and provide the basis for proposing which would be the operative mechanistic pathway in different cases. The results also allow us to explain the stereochemical divergences observed in some of the reactions.  相似文献   

9.
Acrylate 4, prepared from diacetylrhamnal, underwent intramolecular Diels-Alder cycloaddition to give the thermodynamically disfavored trans-fused gamma-lactone 15 as the major product, along with two stereoisomeric cycloadducts. A computational analysis of each of the four transition states arising from 4 and the corresponding cycloadducts permits an understanding of the contrasting requirements for kinetic versus thermodynamic control of the reaction.  相似文献   

10.
A kinetic and mechanistic study of the autoxidation of liquid pentaerythrityl tetraheptanoate (PETH) at 180–220°C has been carried out utilizing a stirred-flow reactor. The results are consistent with the occurrence of a chain reaction scheme similar to that proposed for n-hexadecane autoxidation, namely, the formation of monohydroperoxides by the intermolecular abstraction reaction (3), the formation of α,γ- and α,δ-dihydroperoxides and α,γ- and α,δ-hydroperoxyketones by intramolecular peroxy radical abstraction reactions (4) and (4*), the bimolecular termination of peroxy radicals, reaction (6), and the rapid conversion of α,γ-hydroperoxyketones to the corresponding cleavage acids and methyl ketones, reaction (7). Comparisons of various rate parameters for the n-hexadecane and PETH systems reveal that the values of k7 and (k3/H atom)/(2 k6)1/2 are within experimental uncertainties identical for the two systems at 180°C. The proposed reaction scheme includes the concurrent formation of hydroxy radicals and hydroperoxyketone species. The results of kinetic analysis and the experimentally observed isomer distributions of primary and secondary monohydroperoxide products at high and low oxygen pressures suggest that ≈60% of the hydrogen abstractions from PETH at high oxygen pressures occur by hydroxy radicals.  相似文献   

11.
The understanding of kinetic and thermodynamic factors governing the assembly of nanoparticles is important for the design and control of functional nanostructures. This paper describes a study of the kinetic and thermodynamic factors governing the mediator-template assembly of gold nanoparticles into spherical assemblies in solutions. The study is based on spectrophotometric measurements of the surface plasmon (SP) resonance optical property. Gold nanoparticle cores ( approximately 5 nm) encapsulated with tetraoctylammonium bromide shells were studied as a model system. The mediator-template assembly involves a thioether-based multidentate ligand (e.g., MeSi(CH2SMe)3) which functions as a mediator, whereas the tetraoctylammonium bromide capping molecules function as template agents. On the basis of the temperature dependence of the SP optical property in the mediator-template assembly process, the kinetic and thermodynamic parameters such as the reaction rate constant and reaction enthalpy have been determined. The results led to two important findings. First, the mediator-template assembly of nanoparticles is an enthalpy-driven process. Second, the enthalpy change (-1.3 kcal/mol) is close to the magnitude of the van der Waals interaction energy for alkyl chains and the condensation energy of hydrocarbons. Implications of the findings to the understanding of the interparticle interactions have also been discussed.  相似文献   

12.
The iodide/triiodide redox couple plays a unique role in the dye-sensitized solar cell (DSSC). It is a necessary and unique part of every highly efficient DSSC published to date; alternative redox couples do not perform nearly as well. Hence, a detailed molecular-level understanding of its function is desirable. A density-functional theory (DFT) study has been carried out on the kinetic and thermodynamic aspects of the dye regeneration mechanism involving the iodide/triiodide redox couple and the prototypical N3 dye in the DSSC. The intermediate complexes between the oxidized dye and iodide have been identified. These are outer-sphere complexes of the general formula [dye(+)···I(-)]. Solvent effects are seen to play a critical role in the thermodynamics, whereas relativistic spin-orbit effects are less important. Both the kinetic and thermodynamic data reveal that the formation of complexes between [dye(+)···I(-)] and I(-) is the rate limiting step for the overall dye regeneration process. The regeneration of the neutral dye proceeds with the liberation of I; processes involving atomic iodine or I(-) are inferior, both from thermodynamic and kinetic considerations. The overall dye regeneration reaction is an exothermic process.  相似文献   

13.
Transition structures for the lithium-bromine exchange reaction of 1,1-dibromoalkenes with methyllithium have been located by both the B3LYP and the MP2 levels of theory with the 6-31+G basis set. The reaction with methyllithium dimer gave similar results with lower activation energies. These calculations predict both the kinetic and the thermodynamic stereoselectivity correctly. That is, the sterically more constrained bromine atom of 1,1-dibromoalkenes was predominantly reacted with alkyllithium (dimer) in the kinetic condition. The intramolecular substitution reaction of 4,4-dibromo-3-methyl-3-pentenol in the presence of methyllithium has been investigated. After deprotonation of the alcohol and the lithium-bromine exchange reaction, the intramolecular substitution reaction occurs to give dihydrofuran in a concerted manner. The intermolecular substitution of alpha-chloro alkenyllithium with methyllithium was also studied for comparison. The formation of the indene derivative from 3-(o-bromophenyl)-1,1-dibromo-1-propene in the presence of methyllithium occurs in a similar manner. The lithium-bromine exchange reaction of bromobenzene with methyllithium occurs in an S(N)2 mechanism and the solvent plays an important role.  相似文献   

14.
The mechanism of the Kharasch-Sosnovsky reaction has been investigated using B3 LYP/6-31G* calculations on a chiral reaction model [cyclohexene+tert-butyl perbenzoate-->cyclohex-2-enyl benzoate+tert-butyl alcohol, catalyzed by a chiral bisoxazoline-copper(I) complex]. Although two previous reaction mechanisms have been considered, the results are consistent with a new mechanistic pathway. This path involves ligand exchange between the catalyst-cyclohexene complex with tert-butyl perbenzoate to give a catalyst-perester complex, which undergoes an (either one- or two-step) oxidative addition reaction to yield a copper(III) complex. The limiting step of the Kharasch-Sosnovsky reaction consists of an intramolecular step involving the abstraction of an allylic hydrogen from cyclohexene [which is pi-bound to the copper(III) complex]. The resulting allyl-copper(III) complex (subsequent to the loss of tert-butanol) can undergo a haptotropic rearrangement by means of an eta1-allyl/eta3-allyl equilibrium, leading to scrambling between vinylic and allylic positions when an isotopically labeled substrate is used. The allyl-copper(III) ion undergoes a stereospecific reductive elimination involving the pi-bond migration to yield a reaction product-catalyst complex, which can regenerate the alkene-copper(I) complex by ligand exchange. The proposed reaction mechanism is consistent with all known experimental results (including enantioselectivity data).  相似文献   

15.
为了探究纳米多相反应过程的动力学行为,本文通过液相还原法可控合成了粒度为55 nm的立方体氧化亚铜(Cu2O)。基于纳米与块体Cu2O的区别,采用原位微量热技术获取Cu2O体系与HNO3反应过程的热动力学精细信息,结合热动力学原理及动力学过渡态理论计算得到Cu2O反应动力学参数,并建立立方体动力学模型讨论并佐证动力学实验结果。结果表明,纳米Cu2O的反应速率常数大于块体,而表观活化能、指前因子、活化焓、活化熵和活化Gibbs自由能均小于块体;随着温度的升高,纳米Cu2O的反应速率常数和活化Gibbs自由能均增大。动力学模型表明影响反应动力学参数的主要因素为:偏摩尔表面焓影响表观活化能,偏摩尔表面熵影响指前因子,偏摩尔表面Gibbs自由能影响反应速率常数。本文为纳米材料多相反应动力学参数的获取和分析应用提供了一种普适的理论模型和实验方法。  相似文献   

16.
The mechanism of Pt(II)-catalyzed intramolecular cycloisomerization of allenyne systems has been extensively investigated by DFT calculations. Different mechanistic schemes have been proposed and discussed, including the Alder-ene reaction. The free energy results suggest that the kinetically preferred reaction pathway for precursors that are tri- and tetrasubstituted on the allene moiety should proceed by a five-step mechanism. This would involve formation of a platina(IV)cyclopentene intermediate by selective engagement of the external pi bond of the allene, which would undergo regioselective beta-H elimination from the equatorially disposed methyl group. A metal-induced H migration leads to a second octahedral Pt(IV)-chelate complex, which would yield the expected bicyclic system through an intramolecular migratory insertion step. Therefore, depending on the conformation of the initial eta(4)-reactant complex for trisubstituted patterns, two possible intermediates can be formed that would evolve through different paths. In these cases, the regio- and stereochemical outcomes predicted by the mechanistic scheme proposed agree with experimental data. Substituted precursors on the alkyne moiety follow a distinct, four-step, mechanism also involving an oxidative cyclometalation process to an octahedral Pt(IV) intermediate complex. Theoretical results reveal the kinetic preference for beta-H elimination from the allylic group rather than from the gem-dimethyl group, which should account for the observed regioselectivity.  相似文献   

17.
Asymmetric phase‐transfer catalysis (PTC) has risen to prominence over the last decade as a straightforward synthetic methodology for the preparation of pharmacologically active compounds in enantiomerically pure form. However, the complex interplay of weak nonbonded interactions (between catalyst and substrate) that could account for the stereoselection in these processes is still unclear, with tentative pictorial mechanistic representations usually proposed. Here we present a full account dealing with the enantioselective phase‐transfer‐catalyzed intramolecular aza‐Michael reaction (IMAMR) of indolyl esters, as a valuable synthetic tool to obtain added‐value compounds, such as dihydro‐pyrazinoindolinones. A combined computational and experimental investigation has been carried out to elucidate the key mechanistic aspects of this process.  相似文献   

18.
The molecular mechanism for the intramolecular [5 + 2] cycloaddition reaction of beta-silyloxy-gamma-pyrones bearing tethered alkenes has been characterized using ab initio methods. A comparative study for this sort of cycloaddition carried out at different computational levels points out that the B3LYP/6-31G calculations give similar barriers to those obtained with the MP3/6-31G level. Analysis of the energetic results shows that the reaction takes place along a stepwise process: first, the migration of the neighboring silyl group to the carbonyl group of the gamma-pyrone takes place to give a weak oxidopyrylium ylide intermediate, which by a subsequent concerted intramolecular [5 + 2] cycloaddition affords the final cycloadduct. The cycloaddition process is very stereoselective due to the constraints imposed by the tether. The [5 + 2] cycloaddition reaction has a large barrier, and the presence of the silyloxy group and the intramolecular character of the process are necessary to ensure the thermodynamic and kinetic feasibility of these cycloadditions.  相似文献   

19.
Proton transfer reactions are the rate-limiting steps in many biological and synthetic chemical processes, often requiring complex cofactors or catalysts to overcome the generally unfavourable thermodynamic process of carbanion intermediate formation. It has been suggested that quantum tunnelling processes enhance the kinetics of some of these reactions, which when coupled to protein motions may be an important consideration for enzyme catalysis. To obtain a better fundamental and quantitative understanding of these proton transfer mechanisms, a computational analysis of the intramolecular proton transfer from a carbon acid in the small molecule, 4-nitropentanoic acid, in aqueous solution is presented. Potential-energy surfaces from gas-phase, implicit and QM/MM (quantum mechanical/molecular mechanical) explicit solvation quantum chemistry models are compared, and the potential of mean force, for the full reaction coordinate, using umbrella-sampling molecular dynamics is analysed. Semi-classical multidimensional tunnelling corrections are also used to estimate the quantum tunnelling contributions and to understand the origin of the primary deuterium kinetic isotope effects (KIEs). The computational results are found to be in excellent agreement with the KIEs and the energetics obtained experimentally.  相似文献   

20.
Zhang J  Han Y  Han F  Chen Z  Weng L  Zhou X 《Inorganic chemistry》2008,47(13):5552-5554
Compounds Cp 2Ln[kappa (3)-(4-NH(C 8N 2H 4)(2-NH 2C 6H 4)] [Cp = C 5H 5; Ln = Er ( 1), Y ( 2)] were synthesized by the reaction of Cp 2LnN (i) Pr 2(THF) with anthranilonitrile, indicating a novel organolanthanide-mediated intermolecular nucleophilic addition/cyclization of anthranilonitrile. To trap the intermediate I, a probe reaction of Cp 2ErN (i) Pr 2(THF) with anthranilonitrile and carbodiimide has also been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号