首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Brompheniramine, an antihistamine drug, was employed as a novel UV probe for capillary electrophoresis with indirect UV detection of adamantane drugs (memantine, amantadine, and rimantadine). The probe possesses high molar absorptivity of 24 × 103 L/mol cm at 6 mM, which enables the measurement of these nonchromophore analytes without derivatization. The simple background electrolyte (10 mM sodium dihydrogen phosphate (pH 5.0) containing 5 mM brompheniramine and 6 mM β‐cyclodextrin) provided the separation of the analytes in a short time (7.5 min). Under these conditions, brompheniramine had similar mobility to that of the analyte ions resulting in symmetric peaks with minimal electrodispersion. The analytes displace the probe at a one‐to‐one ratio with transfer values close to unity. β‐Cyclodextrin played a role in the resolution of the structurally similar adamantane derivatives. Method validation showed good linearity (r 2 > 0.98), precision (%RSD ≤ 3.30), and accuracy (recoveries ranging from 98 to 109%). The proposed method was successfully applied to determine the adamantane content in pharmaceutical products.  相似文献   

2.
Kubán P  Hauser PC 《Electrophoresis》2005,26(16):3169-3178
Quantitative total ionic analysis of alcoholic and nonalcoholic beverages was performed by microchip capillary electrophoresis with external contactless conductivity detection. An electrolyte solution consisting of 10.5 mM histidine, 50 mM acetic acid, and 2 mM 18-crown-6 at pH 4.1 was used for the determination of NH(4) (+), K(+), Ca(2+), Na(+), and Mg(2+). Fast analysis of Cl(-), NO(3) (-), and SO(4) (2-) was achieved in 20 mM 2-(N-morpholino)ethanesulfonic acid /histidine electrolyte solution at pH 6.0 and the simultaneous separation of up to 12 inorganic and organic anions was performed in a solution containing 10 mM His and 7 mM glutamic acid at pH 5.75. Limits of detection ranged from 90 to 250 mug/L for inorganic cations and anions, and from 200 to 2000 mug/L for organic anions and phosphate. Calibration curves showed linear dependencies over one to two orders of magnitude when the stacking effect was minimized by injecting standard solutions prepared in background electrolyte solutions. Total analysis times of 35 and 90 s were achieved for the determination of 5 inorganic cations and for the simultaneous determination of 12 inorganic and organic anions, respectively, which represents a considerable reduction of analysis time compared to conventional separation methods used in food analysis.  相似文献   

3.
Sun B  Macka M  Haddad PR 《Electrophoresis》2002,23(15):2430-2438
Capillary electrophoresis (CE) with UV detection was used for the determination of arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, p-aminophenylarsonic acid, 4-hydroxy-3-nitrobenzenearsonic acid, 4-nitrophenylarsonic acid, phenylarsonic acid, and phenylarsine oxide. The electrophoretic mobilities of these anionic species were determined in a 20 mM phosphate buffer in a pH range from 4 to 11, which established pH 10 as the optimum for the separation. The target analytes were then separated in a fused-silica capillary using 20 mM NaHCO(3)-Na(2)CO(3) buffer, pH 10, as electrolyte and detected at 192 nm. Both normal- and reversed electroosmotic flow (EOF) separation modes were investigated and in the latter case, poly(diallydimethylammonium chloride) (PDDAC), was used for dynamic coating of the capillary and to provide a stable and reproducible reversed EOF (relative standard deviation RSD, 0.39%). The influence of electrolyte pH and composition, applied voltage, as well as EOF reversal protocols upon the method performance criteria were investigated. The optimised method provided limits of detection for the target analytes of 1.62, 6.22, 1.45, 1.83, 0.34, 0.40, 0.40, 0.18, and 0.30 mg/L As, respectively. Linearity was obtained in the range of 0.5-40 mg/L As (for aryl compounds) and from 5-100 mg/L As (for the remaining analytes). Reproducibility of peak areas was in the range of 0.8-5.5% RSD. The method was applied to the determination of four aryl arsenic compounds used as additives in animal feed. Analytes were extracted with 40 mM hydrochloric acid - acetonitrile 4:1 v/v, and then cleaned up by passing through a C(18) solid-phase extraction cartridge before analysis by CE with detection at 200 nm. Recoveries for the four analytes were in the range of 78.8-108.3%.  相似文献   

4.
An on-line coupled capillary isotachophoresis - capillary zone electrophoresis method for the determination of lysozyme in selected food products is described. The optimized electrolyte system consisted of 10 mM NH(4)OH + 20 mM acetic acid (leading electrolyte), 5 mM epsilon -aminocaproic acid +5 mM acetic acid (terminating electrolyte), and 20 mM epsilon -aminocaproic acid +5 mM acetic acid +0.1% m/v hydroxypropylmethylcellulose (background electrolyte). A clear separation of lysozyme from other components of acidic sample extract was achieved within 15 min. Method characteristics, i.e., linearity (0-50 micrograms/mL), accuracy (recovery 96+/-5%), intra-assay (3.8%), quantification limit (1 microgram/ml), and detection limit (0.25 microgram/mL) were determined. Low laboriousness, sufficient sensitivity and low running costs are important attributes of this method. The developed method is suitable for the quantification of the egg content in egg pasta.  相似文献   

5.
An on-line coupled capillary isotachophoresis-capillary zone electrophoresis method for the determination of glycyrrhizin in liqueurs is described. The optimised electrolyte system was 5 mM HCl+11 mM varepsilon-aminocaproic acid+0.05% hydroxyethylcellulose+30% methanol (leading electrolyte), 5 mM caproic acid+30% methanol (terminating electrolyte) and 20 mM caproic acid+10 mM histidine+0.1% hydroxyethylcellulose+30% methanol (background electrolyte). Method characteristics, i.e., linearity (20-500 ng/ml), accuracy (recovery 99+/-4%), intra-assay repeatability (2%), intermediate repeatability (3.8%) and detection limit (8 ng/ml) were determined. Speed of analysis, low laboriousness, high sensitivity and low-running cost are the typical attributes of the capillary isotachophoresis-capillary zone electrophoresis method. Developed method was successfully applied to analysis of liqueurs with liquorice extract and some foods (sweets and food supplements) containing liquorice. Found levels of glycyrrhizin in liqueurs, sweets and food supplements varied between 1-16 mg/l, 850-1050 mg/kg and 1.6-1.8 g/kg, respectively.  相似文献   

6.
Cao L  Wang H  Zhang H 《Electrophoresis》2005,26(10):1954-1962
The analytical potential of a fluorescein analogue, 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein (SAMF), for the first time synthesized in our laboratory, as a labeling reagent for the labeling and determination of amino compounds by capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was investigated. Biogenic monoamines and amino acids were chosen as model analytes to evaluate the analytical possibilities of this approach. The derivatization conditions and separation parameters for the biogenic amines were optimized in detail. The derivatization was performed at 30 degrees C for 6 min in boric acid buffer (pH 8.0). The derivatives were baseline-separated in 15 min with 25 mM boric acid running buffer (pH 9.0), containing 24 mM SDS and 12.5% v/v acetonitrile. The concentration detection limit for biogenic amines reaches 8 x 10(-11) mol.L(-1) (signal-to-noise ratio = 3). The application of CE in the analysis of the SAMF-derivatized amino acids was also exploited. The optimal running buffer for amino acids suggested that weak acidic background electrolyte offered better separation than the basic one. The proposed method was applied to the determination of biogenic amines in three different beer samples with satisfying recoveries varying from 92.8% to 104.8%. Finally, comparison of several fluorescein-based probes for amino compounds was discussed. With good labeling reaction, excellent photostability, pH-independent fluorescence (pH 4-9), and the resultant widely suited running buffer pH, SAMF has a great prospect in the determination of amino compounds in CE.  相似文献   

7.
Tian K  Qi S  Cheng Y  Chen X  Hu Z 《Journal of chromatography. A》2005,1078(1-2):181-187
In this paper, a micellar electrokinetic chromatographic (MEKC) method using ionic liquid as modifier for the quantification of the active components of lignans found in the medicinal herbs Schisandra species was developed for the first time. Preliminary investigations employing sodium dodecyl sulfate (SDS) as surfactant did not lead to the necessary resolution of the studied compounds, the addition of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4) to the SDS micellar system resulted in the complete separation of all the compounds. The effects on the separation by several parameters such as BMIM-BF4 and SDS concentration, applied voltage, background electrolyte pH and concentration, were evaluated. Under the optimal conditions (5 mM borate-5 mM phosphate buffer in the presence of 20 mM SDS and 10 mM BMIM-BF4, pH 9.2, applied voltage 25 kV and detection at 254 nm), the method successfully applied to the determination of lignans in extracts of Schisandra chinensis (Turcz.) Baill. and Schisandra henryi C.B. Clarke in less than 13 min. The separation mechanism was also discussed.  相似文献   

8.
A simple technique is described for the routine capillary electrophoretic determination of organic acids in wine samples. Several aromatic and non‐aromatic compounds, including phthalic acid, benzoic acid, sorbic acid, boric acid, and phosphate, were evaluated as background electrolytes in order to obtain the highest resolution and detection sensivity. Factors that affect capillary electrophoretic separation such as the concentration and pH of the background electrolyte (BGE), the concentration of the electroosmotic flow modifier (EOF), and methanol addition to the electrolyte were investigated systematically. Tartaric, malic, succinic, acetic, and lactic acids were determined simultaneously in approximately six minutes using an electrolyte containing 3 mM phosphate and 0.5 mM myristyltrimethylammonium bromide (MTAB) as electroosmotic flow modifier at pH 6.5. This method is quantitative, with recoveries in the 90–102% range and linear up to 50 mg L–1. The precision is better than 1% and the procedure shows the appropriate sensibility, with detection limits between 0.015 and 0.054 mg L–1. The proposed method was successfully employed for the determination of organic acids in wine samples by direct sample injection after appropriate dilution and filtration.  相似文献   

9.
Kubán P  Hauser PC 《Lab on a chip》2008,8(11):1829-1836
The determination of inorganic ions in clinical samples in less than 90 seconds was demonstrated for microchip capillary electrophoresis using capacitively coupled contactless conductivity detection (C(4)D). Bare electrophoresis chips were used in combination with external electrodes which were part of the chip holder. In order to achieve the required selectivity and sensitivity, an optimization of the electrode layout was carried out. Limits of detection (LOD) of 1 microM for K(+), 1.5 microM for Ca(2+), 3 microM for Na(+), 1.75 microM for Mg(2+) and 7.5 microM for Li(+) were achieved. The determination of inorganic cations (NH(4)(+), K(+), Na(+), Ca(2+), Mg(2+)) and anions (Cl(-), NO(3)(-), SO(4)(2-), phosphate) in blood serum and urine samples was possible in one common electrolyte solution containing 15 mM L-arginine, 10.75 mM maleic acid and 1.5 mM 18-crown-6 at pH 5.90 by simply switching the separation voltage from positive to negative polarity. Lithium, present at significant levels when used for therapeutic purposes, can also be determined in blood serum using a slightly modified background electrolyte solution.  相似文献   

10.
Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels.  相似文献   

11.
A contactless conductometric detection (CCD) system for capillary electrophoresis (CE) with a flexible detection cell was applied for the simultaneous determination of small anions and/or cations in rain, surface and drainage water samples. The applied frequency, the amplitude of the input signal, the electrolyte conductivity and electrode distance were found to be the most significant factors affecting the detection sensitivity. 2-(N-Morpholino)ethanesulfonic acid/histidine-based (MES/His) electrolytes were used for direct conductivity detection of anions and cations, while ammonium acetate was selected for indirect conductivity determination of alkylammonium salts. For the simultaneous separation procedure, involving dual-opposite end injection, an electrolyte consisting of 20 mM MES/His, 1.5 mM 18-crown-6 and 20 microM cetyltrimethylammonium bromide provided baseline separation of 13 anions and cations in less than 6 min. The detection limits achieved were 7-30 micrograms/l for direct conductometric detection of various common inorganic cations and anions, excluding F- (62 micrograms/l) and H2PO4- (250 micrograms/l), and 35-178 micrograms/l for indirect conductometric detection of alkyl ammonium cations. The developed electrophoretic method with conductometric detection was compared to ion chromatography.  相似文献   

12.
Simultaneous HPLC assay of 1-adamantanamine hydrochloride (amantadine) and its four related compounds [2-adamantanamine hydrochloride (2-ADA), 1-adamantanmethylamine (ADAMA), 1-(1-adamantyl)ethylamine hydrochloride (rimantadine) and 3,5-dimethyl-1-adamantanamine hydrochloride (memantine)] in phosphate-buffered saline (pH 7.4) after pre-column derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) was developed. Phosphate-buffered saline samples were mixed with borate buffer and NBD-F solution in acetonitrile at 60 degrees C for 5 min and injected into HPLC. Five derivatives were well separated from each other. The lower limits of detection of amantadine, 2-ADA, ADAMA, rimantadine and memantine were 0.008, 0.001, 0.0008, 0.0015 and 0.01 microg/mL, respectively. The coefficients of variation for intra- and inter-day assay were less than 6.4 and 8.2%, respectively. The method presented was applied to a binding study of these compounds to human alpha(1)-acid glycoprotein. While affinity constants and capacities for ADAMA, rimantadine and memantine were calculated by means of Scatchard plots, those for the others were not determined. ADAMA, rimantadine and memantine were bound with different affinities and capacities. These results indicate that NBD-F is a good candidate as a fluorescent reagent to simultaneously determine amantadine and its four related compounds by HPLC after pre-column derivatization. Our method can be applied to binding studies for protein.  相似文献   

13.
A capillary electrophoresis-mass spectrometry method for the simultaneous chiral determination of enantiomers of methamphetamine (MA), amphetamine (AP), dimethylamphetamine (DMA) and p-hydroxymethamphetamine (pOHMA), in urine has been developed. The internal standards used were 2-phenylethylamine and 1-amino4-phenylbutane. The electrolyte was 1 M formic acid (pH 2.2). The chiral selector, which was added to the electrolyte, was a mixture of 3 mM beta-cyclodextrin and 10 mM heptakis(2,6-di-O-methyl)-beta-cyclodextrin. The detection limits were 0.03 microg ml(-1) for the enantiomers of MA and AP and 0.05 microg ml(-1) for the enantiomers of pOHMA using selected ion monitoring. In the analysis of healthy adult urine samples spiked with MA, AP and pOHMA, the precision of within-run assays (n = 4) for the migration time after correction with two internal standards were under 0.04%, and the detection yields utilizing solid phase extraction were 95-105%. This method was applicable to the analysis of urine samples of MA addicts and DMA addicts.  相似文献   

14.
A sensitive and specific method for the determination of memantine in human plasma is presented. Memantine was extracted from plasma and derivatized to the pentafluorobenzoyl derivative in a one-step procedure avoiding any sample concentration steps. Amantadine was used as an internal standard. The compounds were measured by gas chromatography/negative ion chemical ionization mass spectrometry without any further processing. Using this detection mode, the fragment ions at m/z 353 and 325 were obtained at high relative abundance. Calibration graphs were linear over the range 0.117-30 ng ml(-1). At the limit of quantification (LOQ), the inter-assay precision was 2.00% and the intra-assay variability was 3.22%. The accuracy at the LOQ showed deviations of -1.42% (intra-assay) and -2.47% (inter-assay). The method is rugged, rapid and robust and was applied to the batch determination of memantine during pharmacokinetic profiling of the drug.  相似文献   

15.
Alkylsulfonates from methanesulfonic acid to decanesulfonic acid were separated by isotachophoresis with conductivity detection in a common electrolyte system at pH 4.8. The electrolyte system consisted of 10 mM HCl buffered with epsilon-aminocaproic acid (pH 4.8) and 0.1% methylhydroxyethylcellulose (MHEC) acting as the leading electrolyte. The terminating electrolyte was 20 mM caproic acid also containing 0.05% MHEC. Current settings of 250 microA for the first and 50 microA for the second capillary were applied. On one hand, the method was applied to the determination of the content of methanesulfonate as the salt forming agent (mesilate) in a recently registered drug substance. The results obtained by ITP were compared with an orthogonal titration method. On the other hand, due to the column-coupling configuration of the electrophoretic instrument, the method could be extended to the trace determination in the ppm range in order to monitor methanesulfonic acid as an impurity in a drug substance. The validation confirmed the linearity of the method between 1 and 10 mg/l, limits of detection and quantification below 1 mg/l, recovery rates from 92.4 to 95.4%, and repeatability with a R.S.D. of 3.8% (six runs with a 4 mg/l spiked sample). Finally, three batches of a newly produced drug substance could be checked for methanesulfonic acid giving results of below 0.0014% (concentration related to the drug substance).  相似文献   

16.
Summary Four parabens (esters of 4-hydroxybenzoic acid), effective preservatives against the growth of bacteria, yeast, and mold in numerous industrial products, have been used in this work as model compounds to demonstrate the resolving power of capillary electrophoresis (CE). The simultaneous determination of methyl-(MP), ethyl-(EP), propyl-(PP), and butylparaben (BP) was achieved by capillary zone electrophoresis (CZE) with UV diode-array detection at 294 nm. When run voltage, temperature, and electrolyte concentration and pH were optimized the most effective separation was achieved within 7 min by use of 50 cm (effective length) fused silica capillary tubing and operation at 25kV and 20°C. Background electrolyte comprising 35 mM tetraborate buffer adjusted to pH 10.0 gave the best results. The limits of detection of the optimized method ranged from 0.65 μg mL−1 for BP to 0.81 μg mL−1 for MP; the relative standard deviation was between 0.35 and 0.50%. These results showed that the method enables the determination of the four parabens in commerially available cosmetic and pharmaceutical preparations containing some of the parabens and in an unidentified canned berry fruit juice.  相似文献   

17.
An approach to the synthesis of adamantane derivatives with NO-generating fragment containing nitroxy group has been developed. 1-Aminoadamantane, memantine, and adamantanecarboxylic acid have been used as initial compounds. The prepared compounds have shown ability to generate nitric oxide in a system mimicking biological reactions of nitro group reduction.  相似文献   

18.
An on-line coupled capillary isotachophoresis--capillary zone electrophoresis (cITP-CZE) method for the determination of domoic acid in shellfish and algae is described. The optimised cITP-CZE electrolyte system was 10 mM HCl + 20 mM beta-alanine (BALA) + 0.05% hydroxyethylcellulose (leading electrolyte), 5 mM caproic acid (terminating electrolyte) and 20 mM caproic acid + 20 mM BALA + 0.1% HPMC (background electrolyte). A clear separation of the domoic acid from the other components of methanolic sample extract was achieved within 25 min. Method characteristics, i.e., linearity (0-200 microg/l), accuracy (recovery 101+/-3%), intra-assay repeatability (2.4%) and detection limit (1.5 microg/l) were determined. Speed of analysis, low laboriousness, high sensitivity and low running cost are the typical attributes of the cITP-CZE method. Developed method was successfully applied to analysis of shellfish samples and food supplements containing algae extract.  相似文献   

19.
《Analytical letters》2012,45(9):1364-1378
The capillary isotachophoretic method was optimized and used for histidine determination in food samples. The optimum conditions for histidine separation and determination were found on the experimental conditions such as: selectivity, separation speed, pH, concentration of the leading and terminating electrolytes, and electroosmotic flow additives. The optimum electrolytes composition [leading electrolyte: 7 mM NH4OH + 15 mM 2-(N-morpholino)ethanesulfonic acid + 1% hydroxyethylcellulose; pH = 6.10 and terminating electrolyte: 15 mM aminocaproic acid +5 mM acetic acid +40% methanol; pH = 5.10] and conditions of analysis were adopted for histidine determination in food samples (meat and fish products). The proposed electrolyte system was characterized by linearity (10–100 and 100–430 mg · L?1 with R2 = 0.9976 and 0.9991), accuracy (99.5% and 98%), intra-assay of the relative step height (1.40% for standard and 3.20% for food samples analysis), inter-assay of the relative step height (3.65% and 6.30%) and satisfactory quantification and detection limits. The obtained results were compared to a chromatographic method (reversed-phase (RP)-HPLC) for determination of histidine. The average concentrations of histidine in the samples assayed by both methods were statistically comparable. It should be noted that the proposed histidine determination method can be considered as a contribution to Green Analytical Chemistry.  相似文献   

20.
Nguyen HT  Kubán P  Pham VH  Hauser PC 《Electrophoresis》2007,28(19):3500-3506
The determination of arsenic(III) and arsenic(V), as inorganic arsenite and arsenate, was investigated by CE with capacitively coupled contactless conductivity detection (CE-C(4)D). It was found necessary to determine the two inorganic arsenic species separately employing two different electrolyte systems. Electrolyte solutions consisting of 50 mM CAPS/2 mM L-arginine (Arg) (pH 9.0) and of 45 mM acetic acid (pH 3.2) were used for arsenic(III) and arsenic(V) determinations, respectively. Detection limits of 0.29 and 0.15 microM were achieved for As(III) and As(V), respectively by using large-volume injection to maximize the sensitivity. The analysis of contaminated well water samples from Vietnam is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号