首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
It was always known that ordinary thermodynamics requires fairly smooth and slowly varying fields. Extended thermodynamics on the other hand is needed for rapidly changing fields with steep gradients. This notion is made explicit in the present paper by assigning orders of magnitude in steepness to the moments which are the field variables of extended thermodynamics. Once a process is deemed to be steep of O(n), the number of field variables may be read off from a table and the field equations are closed, by omission of all higher order terms. The procedure is demonstrated for stationary one-dimensional heat conduction and for heat conduction and one-dimensional motion. An instructive synthetical case of a “one-dimensional gas” is also treated and it is shown in this case how the hyperbolic equations of extended thermodynamics may be regularized – or parabolized – in a rational manner. The theory of O(n) is fully compatible with the entropy principle of that order, but no entropy postulate is needed here, at least not for closure. The theory can be shown to be compatible with an exponential phase density. Received April 15, 2002 / Published online November 6, 2002 RID="*" ID="*"Communicated by Kolumban Hutter, Darmstadt  相似文献   

2.
In this paper we discuss the principle of minimal entropy production, proposed by Prigogine [1], which affirms that the global entropy production approaches a minimum as a process becomes stationary. We point out in two particular cases that this principle produces field equations that do not agree with the equations of balance of mass, momentum and energy. The processes considered are: • heat conduction in a fluid at rest • shear flow and heat conduction in an incompressible fluid. Now is the appropriate time to review Prigogine's principle, since in recent years a new, and different principle of minimal entropy production has been proposed. This is the “minimax principle” postulated by Struchtrup & Weiss [2]. Within the context of extended thermodynamics this new principle shows great promise. Received April 1, 1999  相似文献   

3.
The evolution of heat in crystalline solids is described at low temperatures by the Boltzmann-Peierls equation, which is a kinetic equation for the phase density of phonons.In this study, we solve initial value problems for the Boltzmann-Peierls equation in relation to the following issues: In thermodynamics, a given kinetic equation is usually replaced by a truncated moment system, which in turn is supplemented by a closure principle so that a system of PDEs results for some moments as thermodynamic variables. A very popular closure principle is the maximum entropy principle, which yields a symmetric hyperbolic system. In recent times, this strategy has led to serious studies on two problems that might arise: 1. Do solutions of the maximum entropy principle exist? 2. Is the physics that is embodied by the kinetic equation more or less equivalently displayed by the truncated moment system? It was Junk who proved for the BOLTZMANN equation of gases that maximum entropy solutions do not exist. The same failure appears for the Fokker-Planck equation, which was proved by means of explicit solutions by Dreyer, Junk, and Kunik.This study has two main objectives:1. We give a positive existence result for the maximum entropy principle if the underlying kinetic equation is the Boltzmann-Peierls equation. In other words we show that the maximum entropy principle can be used here to establish a closed hyperbolic moment system of PDEs. However, the intent of the paper is by no means a general justification of the maximum entropy principle.2. We develop an approximative method that allows the solutions of the kinetic equations to be compared with the solutions of the hyperbolic moment systems. To this end we introduce kinetic schemes that consists of free flight periods and two classes of update rules. The first class of rules is the same for the kinetic equation as well as for the maximum entropy system, while the second class of update rules contains additional rules for the maximum entropy system. It is shown that if a sufficient number of moments are taken into account, the two solutions converge to each other. However, in terms of numerical effort, the presented solver for the kinetic equation clearly outperforms the one for the maximum entropy principle.Received: 15 August 2003, Accepted: 8 November 2003, Published online: 11 February 2004PACS: 02.30.Jr, 02.60.Cb, 05.30.Jp, 44.10. + i, 63.20.-e, 66.70. + f, 65.40.Gr Correspondence to: M. Herrmann  相似文献   

4.
In this article we prove some sharp regularity results for the stationary and the evolution Navier–Stokes equations with shear dependent viscosity, see (1.1), under the no-slip boundary condition(1.4). We are interested in regularity results for the second order derivatives of the velocity and for the first order derivatives of the pressure up to the boundary, in dimension n ≥ 3. In reference [4] we consider the stationary problem in the half space \mathbbR+n{\mathbb{R}}_+^n under slip and no-slip boundary conditions. Here, by working in a simpler context, we concentrate on the basic ideas of proofs. We consider a cubic domain and impose our boundary condition (1.4) only on two opposite faces. On the other faces we assume periodicity, as a device to avoid unessential technical difficulties. This choice is made so that we work in a bounded domain Ω and, at the same time, with a flat boundary. In the last section we provide the extension of the results from the stationary to the evolution problem.  相似文献   

5.
In this paper we consider a class of stationary Navier–Stokes equations with shear dependent viscosity, in the shear thinning case p < 2, under a non-slip boundary condition. We are interested in global (i.e., up to the boundary) regularity results, in dimension n = 3, for the second order derivatives of the velocity and the first order derivatives of the pressure. As far as we know, there are no previous global regularity results for the second order derivatives of the solution to the above boundary value problem. We consider a cubic domain and impose the non-slip boundary condition only on two opposite faces. On the other faces we assume periodicity, as a device to avoid effective boundary conditions. This choice is made so that we work in a bounded domain Ω and simultaneously with a flat boundary. The extension to non-flat boundaries is done in the forthcoming paper [7], by following ideas introduced by the author, for the case p > 2, in reference [5]. The results also hold in the presence of the classical convective term, provided that p is sufficiently close to the value 2.   相似文献   

6.
We consider a system of N balance laws compatible with an entropy principle and convex entropy density. Using the special symmetric form induced by the main field, we define the concept of principal subsystem associated with the system. We prove that the 2 N −2 principal subsystems are also symmetric hyperbolic and satisfy a subentropy law. Moreover we can verify that for each principal subsystem the maximum (minimum) characteristic velocity is not larger (smaller) than the maximum (minimum) characteristic velocity of the full system. These are the subcharacteristic conditions. We present some simple examples in the case of the Euler fluid. Then in the case of dissipative hyperbolic systems we consider an equilibrium principal subsystem and we discuss the consequences in the setting of extended thermodynamics. Finally in the moments approach to the Boltzmann equation we prove, as a consequence of the previous result, that the maximum characteristic velocity evaluated at the equilibrium state does not decrease when the number of moments increases. (Accepted October 6, 1995)  相似文献   

7.
For a thin anisotropic body that is inhomogeneous with respect to curvilinear coordinates x 1 and x 2 and for an arbitrary homogeneous prismatic anisotropic elastic body of variable thickness with one small dimension in the case of the classical parametrization of its domain, we obtain the equations of motion of the Cosserat theory of elasticity in terms of moments with the kinematic boundary conditions of kinematic meaning and with boundary conditions of physical meaning taken into account.  相似文献   

8.
In the context of the first- and second-order theories of consistent-order extended thermodynamics, a systematic approach is established for analyzing the temperature jump at the boundary through studying one-dimensional stationary heat conduction in a rarefied gas at rest. Thereby an approach to the free boundary-value problem in general is explored. Boundary values of temperature are assumed to be in the form of power expansion with respect to the Knudsen number, based on which analytical expressions of the temperature jump aswell as entropy production at the boundary are derived explicitly. Dependencies of these two boundary quantities on both the Knudsen number and accommodation factor are also extensively discussed. The present analysis is expected to be the basis for the study of higher-order theories of consistent-order extended thermodynamics.   相似文献   

9.
In this paper we make use of 26 field equations derived by the moment method to describe the stationary plane Couette flow for dense and rarefied gases. In such high moment theories one needs more boundary conditions than can be controlled experimentally. We employ a new minimax principle for the entropy production to determine the remaining boundary conditions. There results a heat flux in the direction of the flow, proportional to the curvature of the velocity field. Such a heat flux confirms results from molecular dynamics, it vanishes in a dense gas. Received November 30, 1998  相似文献   

10.
李建宇  杨坤  王博  张丽丽 《力学学报》2023,55(4):1028-1038
具有不确定性特征的初始缺陷被认为是导致薄壳结构实际临界载荷值与理论解不相符并呈现分散特征的主要原因.对实际薄壳结构初始缺陷的建模至少需要考虑两个方面的不确定性量化,一是对缺陷分布形式和幅值等固有随机性的量化,二是对小样本量和不准确测量所导致缺陷统计量的不确定性的量化.本文在利用随机场的Karhunen-Loeve展开法对薄壳初始几何缺陷建模的基础上,提出一种基于极大熵原理的缺陷建模方法.首先,采用极大熵分布来估计Karhunen-Loeve随机变量的概率密度函数,以适应不能使用高斯随机场进行缺陷随机场建模的情况.随后,通过将经典的等式约束极大熵模型扩展为区间约束极大熵模型,实现对实际工程中仅能获得少量薄壳结构几何缺陷样本数据所导致的认知不确定性的量化.最后,将所提方法用于对国际缺陷数据库的A-Shell进行缺陷建模和临界载荷预测.研究表明,所提基于区间约束极大熵原理的随机场建模方法在能够有效表征实测数据高阶矩信息的同时,还具备量化小样本数据导致的认知不确定性的能力,并且高斯随机场模型和基于等式约束极大熵原理的随机场模型是本文所提建模方法的两种特殊情况.  相似文献   

11.
孔隙热弹性体有限变形动力学的若干变分原理   总被引:1,自引:0,他引:1  
首先通过对熵均衡方程积分,将其变换为无一阶时间导数项的等价方程,再将Hamilton变分原理运用和推广于各向异性孔隙热弹性体有限变形动力学中,建立了相应的非线性控制微分方程、力的边界条件和初始条件.同时,引入孔隙百分比变化和温度变化引起的力矩,将Hamilton变分原理推广到孔隙热弹性结构中,提出了以Kirchhoff-Love假设为基础的孔隙热弹性Karman-型薄板的完全的非线性数学模型,该模型考虑了中面力、中面惯性和转动惯性影响.  相似文献   

12.
In this work, the size-dependent buckling of functionally graded(FG)Bernoulli-Euler beams under non-uniform temperature is analyzed based on the stressdriven nonlocal elasticity and nonlocal heat conduction. By utilizing the variational principle of virtual work, the governing equations and the associated standard boundary conditions are systematically extracted, and the thermal effect, equivalent to the induced thermal load, is explicitly assessed by using the nonlocal heat conduction law. The ...  相似文献   

13.
We consider the evolution system for N-moments of the Boltzmann equation and we require the compatibility with an entropy law. This implies that the distribution function depends only on a single scalar variable which is a polynomial in . It is then possible to construct the generators such that the system assumes a symmetric hyperbolic form in the main field. For an arbitrary we prove that the systems obtained maximise the entropy density. If we require that the entropy coincides with the usual one of non-degenerate gases, we obtain an exponential function for , which was already found by Dreyer. From these results the behaviour of the characteristic wave velocities for an increasing number of moments is studied and we show that in the classical theory the maximum velocity increases and tends to infinity, while in the relativistic case the wave and shock velocities are bounded by the speed of light. Received June 5, 1997  相似文献   

14.
The vibration analysis of plates using the multivariable spline element method is presented in this paper. The spline functions are applied to construct bending moments, twisting moments and transverse displacement field functions. The spline equations of eigenvalue problems with multiple variables of vibration of plates are derived based on the Hellinger-Reissner mixed variational principle. For simplicity, the boundary conditions which consist of three local spline points are amended to fit any specified boundary conditions. Several numerical solutions of plate vibration analysis are presented which illustrate the accuracy and convergence of the method.  相似文献   

15.
Hyperbolic heat conduction in a plane slab, infinitely long solid cylinder and solid sphere with a time dependent boundary heat flux is analytically studied. The solution is based on the separation of variables method and Duhamel’s principle. The temperature distribution, the propagation and reflection of the temperature wave and the effect of geometry on the shape of the wave front are studied for the case of a rectangular pulsed boundary heat flux. Comparisons with the solution obtained for Fourier heat conduction are performed by considering the limit of a vanishing thermal relaxation time.  相似文献   

16.
The problem of stationary inner heating of cold glaciers is considered in [1, 2]. It is shown that under certain conditions in the stationary state the heat released inside the glacier due to viscous dissipation is not carried off through the boundary surfaces, and that there is an analogy with the stationary theory of thermal explosions [3]. It was assumed that the temperature at the bed of the glacier could reach the melting point due to nonstationary heating and that the conditions would be produced for motion of the glacier. Here we examine the nonstationary response of a glacier to small deviations of the system parameters from critical values corresponding to the stationary state.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 169–172, September–October, 1975.  相似文献   

17.
It is well known that, when the vertex angle of a straight wedge is less than the critical angle, there exists a shock-front emanating from the wedge vertex so that the constant states on both sides of the shock-front are supersonic. Since the shock-front at the vertex is usually strong, especially when the vertex angle of the wedge is large, then a global flow is physically required to be governed by the isentropic or adiabatic Euler equations. In this paper, we systematically study two-dimensional steady supersonic Euler (i.e. nonpotential) flows past Lipschitz wedges and establish the existence and stability of supersonic Euler flows when the total variation of the tangent angle functions along the wedge boundaries is suitably small. We develop a modified Glimm difference scheme and identify a Glimm-type functional, by naturally incorporating the Lipschitz wedge boundary and the strong shock-front and by tracing the interaction not only between the boundary and weak waves, but also between the strong shock-front and weak waves, to obtain the required BV estimates. These estimates are then employed to establish the convergence of both approximate solutions to a global entropy solution and corresponding approximate strong shock-fronts emanating from the vertex to the strong shock-front of the entropy solution. The regularity of strong shock-fronts emanating from the wedge vertex and the asymptotic stability of entropy solutions in the flow direction are also established.  相似文献   

18.
Résumé We consider the Euler equations of a perfect fluid having only two independent space-like variables, which account for the stationary 2-dimensional or axisymmetrical 3-dimensional cases as well as the 2-dimensional Riemann problem. We show that the pressure and the angle between an axis and the velocity field satisfy a first-order system which turns out to be elliptic in the subsonic zone. In particular, the pressure satisfies a maximum principle which has not been stated before, to the best of my knowledge. Using this and the Bernouilli law, we give various a priori estimates of the pressure, the density, the enthalpy, and the velocity in the problem of the reflection of a shock wave by a wedge. We also bound the size of the subsonic region and the force that the fluid applies to the boundary. Presenté par R. Kohn  相似文献   

19.
基于齐次扩容精细积分法和复数矢径虚拟边界谱方法,利用Fourier积分变换和稳相法,提出了一种具有较高效率和精度的新的求解水下纵向加肋无限长非圆柱壳声辐射问题的半解析方法.考虑了非圆柱壳和肋骨之间同时存在多种相互作用力和力偶矩,较已住很多学者仅计及法向相互作用力更加符合实际.不仅比较了该文方法和精确计算纵向加肋圆柱壳在集中点力激励下的声辐射计算结果,同时还研究了肋骨数量、大小以及椭圆柱壳横截面椭圆度对声辐射特性的影响.数值计算结果表明该文方法较已有的混合FE-BE法更为有效.  相似文献   

20.
We consider the stationary motion of a viscous incompressible fluid in a two-dimensional exterior domain; we prove that the problem has a solution for small values of the flux of the boundary datum through the boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号