首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new color additive, D&C Black No. 2, a high-purity furnace black in the general category of carbon blacks, was listed as a color subject to batch certification by the U.S. Food and Drug Administration. A simple procedure was developed to determine mercury (Hg) in D&C Black No. 2, which is limited by specification to not more than 1 ppm Hg. The method uses partial acid digestion followed by cold vapor atomic absorption and was developed by modifying a method used for other color additives. The carbon black samples are treated with a mixture of nitric and hydrochloric acids and heated by microwave in sealed Teflon vessels. The resulting solutions, which are stable to Hg loss for at least 1 week, are diluted and analyzed for Hg using cold vapor atomic absorption spectrometry. Validation was performed by spiking carbon black samples with inorganic Hg (HgNO3) at levels from 0.1 to 1.5 microg/g, and by analyzing 2 standard reference materials. At the specification level of 1 ppm Hg (1 microg Hg/g), the 95% confidence interval was +/-0.01 ppm Hg (0.01 microg Hg/g). The method developed in this study gave good results for very difficult-to-analyze materials, such as coal standard reference materials and carbon black. By eliminating volatility and adsorption factors through the formation of HgCl4(-2) complexes, one can avoid using extremely hazardous acids such as HF and HClO4.  相似文献   

2.
A reversed-phase liquid chromatographic method was developed to determine parts-per-million and higher levels of Sudan 1, 1-(phenylazo)-2-naphthalenol, in the disulfo monoazo color additive FD&C Yellow No. 6 and in a related monosulfo monoazo color additive, D&C Orange No. 4. Sudan I, the corresponding unsulfonated monoazo dye, is a known impurity in these color additives. The color additives are dissolved in water and methanol, and the filtered solutions are directly chromatographed, without extraction or concentration, by using gradient elution at 0.25 mL/min. Calibrations from peak areas at 485 nm were linear. At a 99% confidence level, the limits of determination were 0.008 microg Sudan I/mL (0.4 ppm) in FD&C Yellow No. 6 and 0.011 microg Sudan I/mL (0.00011%) in D&C Orange No. 4. The confidence intervals were 0.202 +/- 0.002 microg Sudan I/mL (10.1 +/- 0.1 ppm) near the specification level for Sudan I in FD&C Yellow No. 6 and 20.0 +/- 0.2 microg Sudan I/mL (0.200 +/- 0.002%) near the highest concentration of Sudan I found in D&C Orange No. 4. A survey was conducted to determine Sudan I in 28 samples of FD&C Yellow No. 6 from 17 international manufacturers over 3 years, and in a pharmacology-tested sample. These samples were found to contain undetected levels (16 samples), 0.5-9.7 ppm Sudan I (0.01-0.194 microg Sudan I/mL in analyzed solutions; 11 samples including the pharmacology sample), and > or =10 ppm Sudan I (> or = 0.2 microg Sudan I/mL; 2 samples). Analyses of 21 samples of D&C Orange No. 4 from 8 international manufacturers over 4 years found Sudan I at undetected levels (8 samples), 0.0005 to < 0.005% Sudan I (0.05 to < 0.5 microg Sudan I/mL in analyzed solutions; 3 samples, including a pharmacology batch), 0.005 to <0.05% Sudan I (0.5 to <5 microg Sudan I/mL; 9 samples), and 0.18% Sudan I (18 microg Sudan I/mL; 1 sample).  相似文献   

3.
For the determination of total mercury in hair, an amount (25.0 mg) of hair sample was digested with conc. HNO3 (400 microl) at 90 degrees C for 10 min in a 7-ml teflon microreaction vessel. After digestion, the pH of the acidic hair mixture was adjusted to 5.0-6.0 by NaOH and was then passed through a clean-up Sep-Pak C18 cartridge. To the eluate, 2,3-dimercaptopropane-1-sulfonate (DMPS) and sodium acetate buffer (pH = 6.0) were added to form a mercury-DMPS complex. This complex was preconcentrated on two Sep-Pak C18 cartridges in series, and each cartridge was eluted with methanol and adjusted to 2.00 ml. A portion (50 microl) was introduced into a graphite cuvette and then atomized according to a temperature program. The method detection limit (MDL, 3sigma) was 0.064 (microg g(-1)); the calibration graph was linear up to 7.52 microg g(-1). Good accuracies were obtained when testing two human hair certified reference materials (GBW 09101 and BCR-397). Six real samples were analyzed, and the recoveries were 95.8 - 98.2% with a relative standard deviation (RSD, n = 3) < 2.1%. For the determination of methylmercury (CH3Hg+), 25.0 mg of hair sample was extracted with 2.0 mol dm(-3) HCl (1.0 ml) by ultrasonicating for 1 h. The supernatant solution was used for CH3Hg+ analysis and the hair residue was used for the analysis of inorganic mercury (Hg2+). The MDL of CH3Hg+ was 0.068 microg g(-1); the calibration graph was linear up to 6.00 microg g(-1). Six real samples were analyzed, and the recoveries were 96.0-99.2% with RSD (n = 3) < 2.3%. The sum of the concentrations of CH3Hg+ and Hg2+ was very close to that of the total mercury measured with a relative error within 3.6%. The proposed method can be accurately applied to the measurement of CH3Hg+, Hg2+, and total mercury in hair samples.  相似文献   

4.
The preparations of digested samples of certifiable color additives by dry ashing and wet digestion for arsenic analysis by hydride generation atomic absorption spectrometry (AAS) were compared. The dry ashing technique was based on the preparation used in ASTM D4606-86 for determination of As and Se in coal. The acid digestion method used nitric and sulfuric acids heated by microwaves in sealed vessels. The digested color additives were analyzed for As by using hydride generated from sodium borohydride mixed with the acidified solution on a flow injection system leading to an atomic absorption spectrometer. Dry ashing was preferable to wet digestion because wet digestion yielded poor recoveries of added As. Dry ashing followed by hydride generation AAS gave determination limits of 0.5 ppm As in the color additives. At a specification level of 3 ppm As, the precision of the method using dry ashing was +/- 0.4 ppm (95% confidence interval).  相似文献   

5.
A liquid chromatography-inductively coupled plasma mass spectrometric (LC-ICP-MS) method for lead and mercury speciation analysis was described. Sample containing ionic lead and mercury compounds was subjected to liquid chromatographic separation before injection into the direct injection high efficiency nebulizer (DIHEN, 170-AA). The species studied include inorganic lead (Pb(II)), trimethyl lead (trimethyl-Pb), triethyl lead (triethyl-Pb), inorganic mercury (Hg(II)), methyl mercury (methyl-Hg) and ethyl mercury (ethyl-Hg), which were well separated by reversed-phase liquid chromatography with a C18 column as the stationary phase and a pH 2.8 solution of 0.2% (v/v) 2-mercaptoethanol, 1 mg L(-1) ETDA, 174.2 mg L(-1) sodium 1-pentanesulfonate and 12% (v/v) methanol as the mobile phase. The lead and mercury species in biological tissues were quantitatively extracted, into 10 g L(-1) EDTA and 0.2% (v/v) 2-mercaptoethanol solution taken in a closed centrifuge tube and kept on water bath, using microwaves at 65 degrees C for 2 min. The spike recovery of individual lead and mercury species determined by spiking the samples with suitable concentration of lead and mercury mixture standard were between 93% and 99%. The detection limits of the species studied were in the range 0.1-0.3 microg Pb L(-1) and 0.2-0.3 microg Hg L(-1). The procedure has been applied for the speciation analysis of two reference samples namely NRCC DOLT-3 Dogfish Liver and DORM-2 Dogfish Muscle and a swordfish sample obtained locally. The sum of the concentrations of individual species has been compared with the certified values for total lead and mercury to verify the accuracy of the method. The precision between sample replicates was better than 10% with LC-DIHEN-ICP-MS method.  相似文献   

6.
The total mercury content in urine was determined by inductively coupled plasma mass spectrometry with the so-called cold vapour method after on-line oxidative treatment of the sample in a microwave oven (FI-MW-CV-ICPMS). Use of a KBr/KBrO(3) mixture, microwave digestion, and the final oxidation with KMnO(4), assure the complete recovery of the organic forms of Hg which would be difficult to determine otherwise if using only the CV-ICPMS apparatus. Quantitative recoveries were obtained for phenyl Hg chloride (PMC), dimethyl Hg (DMM), Hg acetate (MA) and methyl Hg chloride (MMC). Use of automatic flow injection microwave systems (FI-MW) for sample treatment reduces environmental contamination and allows detection limits suitable for the determination of reference values. Since no certified reference materials were commercially available in the concentration ranges of interest, the accuracy of the proposed procedure has been assessed by analysing a series of urine samples with two independent techniques, ICP-MS and AAS. When using the FI-MW-CV-ICP-MS technique, the detection limit was assessed at 0.03microg/L Hg, while with FI-MW-CV-AAS it was 0.2microg/L Hg. The precision of the method was less than 2-3% for FI-MW-CV-ICP-MS and about 3-5% for FI-MV-CV-AAS at concentrations below 1microg/L Hg. These results show that ICP-MS can be considered as a "reference technique" for the determination of total urinary Hg at very low concentrations, such as are present in non-exposed subjects.  相似文献   

7.
An on-line inorganic and organomercury species separation, preconcentration and determination system consisting of cold vapor atomic absorption spectrometry (CV-AAS or CV-ETAAS) coupled to a flow injection (FI) method was studied. The inorganic mercury species was retained on a column (i.d., 3 mm; length 3 cm) packed to a height of 0.7 cm with a chelating resin aminopropyl-controlled pore glass (550 A) functionalized with [1,5-bis (2 pyridyl)-3-sulphophenyl methylene thiocarbonohydrazyde] placed in the injection valve of a simple flow manifold. Methylmercury is not directly determined. Previous oxidation of the organomercurial species permitted the determination of total mercury. The separation of mercury species was obtained by the selective retention of inorganic mercury on the chelating resin. The difference between total and inorganic mercury determined the organomercury content in the sample. The inorganic mercury was removed on-line from the microcolumn with 6% (m/v) thiourea. The mercury cold vapor generation was performed on-line with 0.2% (m/v) sodium tethrahydroborate and 0.05% (m/v) sodium hydroxide as reducing solution. The determination was performed using CV-AAS and CV-ETAAS, both approaches have been used and compared for the speciation of mercury in sea food. A detection limit of 10 and 6 ng l(-1) was achieved for CV-AAS and CV-ETAAS, respectively. The precision for 10 replicate determinations at the 1 microg l(-1) Hg level was 3.5% relative standard deviation (R.S.D.), calculated from the peak heights obtained. Both approaches were validated with the use of two certified reference materials and by spiking experiments. By analyzing the two biological certified materials, it was evident that the difference between the total mercury and inorganic mercury corresponds to methylmercury. The concentrations obtained by both techniques were in agreement with the certified values or with differences of the certified values for total Hg(2+) and CH(3)Hg(+), according to the t-test for a 95% confidence level. It is amazing how this very simple method is able to provide very important information on mercury speciation.  相似文献   

8.
Closed microwave digestion and a high-pressure asher have been evaluated for wet-oxidation and extraction of lead, cadmium, chromium, and mercury from a range of typical packaging materials used for food products. For the high-pressure asher a combination of nitric and sulfuric acids was efficient for destruction of a range of packaging materials; for polystyrene, however, nitric acid alone was more efficient. For microwave digestion, a reagent containing nitric acid, sulfuric acid, and hydrogen peroxide was used for all materials except polystyrene. Use of the high-pressure asher resulted in the highest recoveries of spiked lead (median 92%), cadmium (median 92%), chromium (median 97%), and mercury (median 83%). All samples were spiked before digestion with 40 microg L(-1) Cd, Cr, and Pb and 8 microg L(-1) Hg in solution. The use of indium as internal standard improved the accuracy of results from both ICP-MS and ICP-AES. Average recovery of the four elements from spiked packaging materials was 92 +/- 14% by ICP-MS and 87 +/- 15% (except for mercury) by ICP-AES. For mercury analysis by CVAAS, use of tin(II) chloride as reducing agent resulted in considerably better accuracy than use of sodium borohydride reagent.  相似文献   

9.
A technique for stripping determination of mercury traces in air employing a glassy carbon electrode is described. The sample is passed at 2 liters min?1 for 2 hr through an absorber containing 0.2 M potassium permanganate and 10% wv sulfuric acid (1:1). After reduction with hydroxylamine hydrochloride, the determination is carried out in 0.12 M potassium thiocyanate at pH 2.0 ± 0.2 in the presence of 0.2 ppm of cupric ions. Calibration curves were found to be linear in the range 20 ppb-1 ppm Hg(II) in the cell. The accuracy of the method was tested over simulated samples and it was found to be better than 95%; the relative standard deviation was 5% or less. The limit of detection of mercury in air was approximately 10 μg m?3.  相似文献   

10.
An analytical procedure for the determination of methylmercury in human hair after acid digestion using aqueous ethylation, headspace solid-phase microextraction sampling and final gas chromatography-cold-vapour atomic fluorescence spectrometry detection is described. Acid digestion, extraction procedure and chromatographic conditions were optimised. An optimal linear range using standard mercury solutions was found and concentration detection limits for the mercury species, MeHg and Hg2+, were about 50 and 80 ng/g, respectively, for 100 mg of human hair. The reproducibility of the developed analytical procedure assessed for hair samples with incurred MeHg was better than 18% (n=5). A certified reference material from the National Institute of Environmental Studies (Japan) was used for validation. Analysis of human hair collected from urban inhabitants was performed and the mean value of methylmercury content in hair samples was 0.764 +/- 0.732 microg/g for the population tested. The developed analytical method is simple, fast and a suitable procedure for the monitoring and screening of human exposure to methylmercury.  相似文献   

11.
Li Y  Jiang Y  Yan XP 《Electrophoresis》2005,26(3):661-667
Capillary electrophoresis (CE) was directly interfaced to flame-heated furnace atomic absorption spectrometry (FHF-AAS) via a laboratory-made thermospray interface for nanoliter trace element speciation. The CE-FHF-AAS interface integrated the superiorities of stable CE separation, complete sample introduction, and continuous vaporization for AAS detection without the need of extra external heat sources and any post-column derivation steps. To demonstrate the usefulness of the developed hybrid technique for speciation analysis, three environmentally significant and toxic forms of methylmercury (MeHg), phenylmercury (PhHg), and inorganic mercury (Hg(II)) were taken as model analytes. Baseline separation of the three mercury species was achieved by CE in a 60 cm long x 75 microm inner diameter fused-silica capillary at 20 kV and using a mixture of 100 mM boric acid and 10% v/v methanol (pH 8.30) as running electrolyte. The precision (relative standard deviation, RSD, n = 7) of migration time, peak area and peak height for the mercury species at 500 microg x L(-1) (as Hg) level were in the range of 0.9-1.2%, 1.5-1.9%, and 1.4-2.0%, respectively. The detection limit (S/N = 3) of three mercury species was 3.0 +/- 0.15 pg (as Hg), corresponding to 50.8 +/- 2.4 microg x L(-1) (as Hg) for 60 nL sample injection, which was almost independent on specific mercury species. The developed hybrid technique was successfully applied to the speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).  相似文献   

12.
Cloud point extraction (CPE) has been used for the pre-concentration of mercury, after the formation of a complex with 2-(5-bromo-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP), and later analysis by electrothermal atomic absorption spectrometry (ETAAS) using polyethyleneglycolmono-p-nonyphenylether (PONPE 7.5) as surfactant. The chemical variables affecting the separation step were optimized. Under the optimum conditions, i.e, pH 8.5, cloud point temperature 80 degrees C, 5-Br-PADAP=4x10(-5) mol L(-1), PONPE 7.5=0.2%, sample volume=1.0 mL, an enhancement factor of 22-fold was reached. The lower limit of detection (LOD) obtained under the optimal conditions was 0.01 microg L(-1). The precision for 10 replicate determinations at 2.0 microg L(-1) Hg was 4.0% relative standard deviation (R.S.D.). The calibration graph using the pre-concentration system for mercury was linear with a correlation coefficient of 0.9994 at levels near the detection limits up to at least 16 microg L(-1). The method was successfully applied to the determination of mercury in biological samples and in certified reference material (QC METAL LL3).  相似文献   

13.
A montmorillonite from Wyoming-USA was used to prepare an organo-clay complex, named 2-thiazoline-2-thiol-hexadecyltrimethylammonium-clay (TZT-HDTA-clay), for the purpose of the selective adsorption of the heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). Adsorption isotherms of Hg2+, Pb2+, Cd2+, Cu2+, and Zn2+ from aqueous solutions as a function of the pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The organo-clay complex was very selective to Hg(II) in aqueous solution in which other metals and ions were also present. The accumulation voltammetry of Hg(II) was studied at a carbon paste electrode chemically modified with this material. The mercury response was evaluated with respect to the pH, electrode composition, preconcentration time, mercury concentration, "cleaning" solution, possible interferences and other variables. A carbon paste electrode modified by TZT-HDTA-clay showed two peaks: one cathodic peak at about 0.0 V and an anodic peak at 0.25 V, scanning the potential from -0.2 to 0.8 V (0.05 M KNO3 vs. Ag/AgCl). The anodic peak at 0.25 V presents excellent selectivity for Hg(II) ions in the presence of foreign ions. The detection limit was estimated as 0.1 microg L(-1). The precision of determination was satisfactory for the respective concentration level.  相似文献   

14.
A simple and cost-effective method for speciation analysis of trace mercury in seafood was developed by on-line coupling flow injection microcolumn displacement sorption preconcentration to high-performance liquid chromatography (HPLC) with UV detection. The methodology involved the presorption of the Cu-PDC (pyrrolidine dithiocarbamate) chelate onto a microcolumn packed with a cigarette filter sorbent, simultaneous preconcentration of Hg(II), methylmercury (MeHg), ethylmercury (EtHg), and phenylmercury (PhHg) onto the microcolumn through a displacement reaction with the presorbed Cu-PDC, and their subsequent elution from the microcolumn for on-line HPLC separation. Interferences from heavy metal ions with lower stability of their PDC chelates relative to Cu-PDC were minimized without the need of any masking agents. With the consumption of 4.0 ml of sample solution, the enrichment factors were about 80. The detection limits were 10-25 ng g(-1) (as Hg) in fresh tissue. Precision (R.S.D. (%), n = 5) ranged from 2 to 3% at the 500 microg l(-1) (as Hg) level. The developed technique was validated by analyzing a certified reference material (DORM-2, dogfish-muscle), and was shown to be useful for mercury speciation in real seafood samples.  相似文献   

15.
Solvent extraction, sonication, and microwave-assisted extractions in the presence of extraction agents (thioacetic acid, citric acid, cysteine, 2-mercaptoethanol, HCl + NaCl, etc.) were tested for the isolation of mercury species. A mixture of 6 M HCl and 0.1 M NaCl was selected as the most suitable extraction agent. The extraction efficiency was about 10% higher and the RSD below 3.3% when microwave-assisted extraction was applied instead of sonication. The liquid chromatography-cold vapour atomic fluorescence spectrometry (LC/CV-AFS) method was optimised and used for separation and determination of inorganic mercury cations and alkylated and arylated mercury species. Isocratic elution at a flow rate of 0.15 mL/min (with a mobile phase containing 0.05% 2-mercaptoethanol (pH = 5) and 7% methanol and with a stepwise increase of methanol content up to 100% MeOH in the 15th min) was used for separation of mercury species on a Hypersil BDS C18 RP column. The limits of detection of the LC/CV-AFS system were estimated as 0.2 microg/L (3%) for MeHg+, 0.07 microg/L (5.3%) for inorganic Hg, 0.06 microg/L (3.4%) for PhHg+, and 0.12 microg/L (4.4%) for EtHg with the corresponding RSDs at 5 microg/L (n = 10) given in parentheses. The concentrations (2-10 mg/kg fresh weight) of total mercury and methylmercury (90-99% of the total mercury) in selected fish obtained by HPLC/CV-AFS were in good agreement (absolute deviations 0.05 mg/kg) but more precise (RSDs <5.4% at 5 mg/L, n = 10) than those determined by GC coupled to an electron capture detector. The RSDs (3.1-8.2% and 4.1-9.0%) of the overall analytical procedure for the determination of total mercury (AMA 254) and methylmercury (HPLC/CV-AFS) were determined for intra-day and inter-day assays, respectively.  相似文献   

16.
A comparative study is made on different activation methods for mercury analysis. Mercury concentrations down to 0.1 ppm were determined instrumentally via the isotopes197Hg (T=65 h) and203Hg (T=47 d). A high-resolution Ge(Li) detector was used in measuring the activity and a small computer for data reduction. Up to 500 samples were measured daily. Chemical separations were performed on samples with low mercury concentrations. Sensitivity of 0.01 ppm was attained by precipitating HgS from basic solutions and counting197Hg on NaI(T1) detector. A new rapid instrumental method was also developed based on199mHg (T=43 min). This short-lived isotope was activated with resonance neutrons. The sensitivity of the method is 0.5 μg and it requires only 1 hr.  相似文献   

17.
The system Hg(II)/Xylenol Orange/Amberlite LA-2 dissolved in 1:1 v v 3-methylbutan-1-ol/chloroform medium has been studied. A 3:2:2 complex is formed, which is suitable for analytical measurements at temperatures <18 degrees . This complex allows the determination of mercury in the range 0.19-5.5 ppm with a molar absorptivity of 2.12 x 10(4).mole(-1).cm(-1) at 600 nm and extraction pH of 7.4 (standard deviation 0.065 ppm). The proposed method has been applied to the determination of mercury in contaminated water with a high chloride content.  相似文献   

18.
Růzicka J  Lamm CG 《Talanta》1969,16(2):157-168
Solid samples (1-2 g) are burned in oxygen in a flask containing radiomercury in dilute hydrochloric acid, in which the non-active mercury to be determined is immediately absorbed. All mercury is subsequently extracted by dithizone in carbon tetrachloride and then re-extracted into dilute hydrochloric acid. This aqueous phase is further analysed automatically (AutoAnalyzer, 20 samples hr ) as previously described. Liquids (up to 100 ml) are analysed in the same way but instead of being burned in oxygen are first oxidized with potassium permanganate in acid medium. Quantities between 2 and 0.00004 ppm Hg were determined in various materials. Results for international biological standards agreed well with values obtained by activation analysis: kale 0.159 ppm Hg (relative standard deviation 2%) and IAEA cereals 0.0435 ppm Hg (+/- 5%). The new method is far more simple and rapid than activation analysis and just as sensitive; it is therefore more suitable for routine work. About 100 samples can be analysed per day.  相似文献   

19.
A method was proposed for the simultaneous determination of trace cadmium and mercury by vapor generation non-dispersive atomic fluorescence spectrometry using an intermittent flow system. The effects of the parameters on the performance were studied systematically. The parameters such as acid concentration of the reaction medium, flow rate of the carrier gas and shield gas, the observation height and the atomizer temperature, etc. which affected the sensitivity, were optimized. Ascorbic acid, cobalt ion and thiourea were used as enhancement reagents or masking agents to enhance the generation efficiency of the volatile species of Cd and Hg. The mechanisms of their effects on vapor generation were investigated. In the presence of thiourea and ascorbic acid, the influences of some coexisting elements on the determination of cadmium and mercury were investigated. The detection limits (3sigma) were 0.010 microg l(-1) for Cd and 0.019 microg l(-1) for Hg, respectively. The relative standard deviations for Cd and Hg at 1.00 microg l(-1) were 2.6% and 0.97% (n = 11), respectively. The proposed method has been satisfactorily applied to the determination of trace cadmium and mercury in Chinese herbal medicine.  相似文献   

20.
Okçu F  Ertaş H  Ertaş FN 《Talanta》2008,75(2):442-446
A new method for the determination of traces of total mercury by using a gold film electrode in salt samples was developed. Table salts are known to contain mercury at ultra-trace level as well as a high quantity of chloride ions that cause severe disturbance during the stripping step when gold is used as the electrode material in voltammetric measurements. The interference of high chloride content in the determination of mercury was eliminated by reducing its concentration down to 3 x 10(-3) mol L(-1) level which is optimum for the determination by using on-line medium exchange procedure immediately after the deposition step. The deposition potential applied to the electrode was maintained at 0.2 V (vs. Ag/AgCl double junction electrode) while the cell content was sucked by a pump and replaced with fresh electrolyte simultaneously. The analyte loss resulted from the air contact of the electrode was prevented by this means. The mercury ions present in the salt samples were collected at +0.2 V for 60 s, the electrolyte was replaced by 0.1 mol L(-1) HClO4 and the potential was scanned, attaining a detection limit of 0.17 microg L(-1), with R.S.D. of 1.2% (S/N=3). The recovery of the method was 94.6%. The performance and accuracy of the method was compared with that of atomic fluorescence spectrometry (AFS). Consequently, this developed method can offer a wide range of application in saline samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号