首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A remarkable difference for (2)J(C(2)-H(f)) coupling constant in syn and anti conformers of 5-X-furan-2-carboxaldehydes (X = CH(3), Ph, NO(2), Br) and a rationalization of this difference are reported. On the basis of the current knowledge of the Fermi-contact term transmission, a rather unusual dual-coupling pathway in the syn conformer is presented. The additional coupling pathway resembles somewhat that of the J(H-H) in homoallylic couplings, which are transmitted by hyperconjugative interactions involving the pi(C=C) electronic system. The homoallylic coupling pathway can be labeled as sigma*(C-H) <-- pi(C=C) --> sigma*(C-H). In the present case, this additional coupling pathway, using an analogous notation, can be labeled as sigma*(C(2)-C(C)) <-- LP(1)(O(1))...LP(2)(O(C)) --> sigma*(C(C)-H(f)) (sigma*(C(2)-C(C))) where O(1) and O(C) stand for the ring and carbonyl O atoms, respectively. This additional coupling pathway is not activated in the anti conformers since both oxygen lone pairs do not overlap.  相似文献   

2.
Natural bond orbital (NBO) analysis of several early TSs does not support the sigma --> sigma*# hypothesis. The sigma --> pi*(C=O) interaction controls the carbonyl pyramidalization that, in turn, controls the pi-selectivity of a nucleophilic addition. In contrast, late TSs are devoid of sigma --> pi*(C=O) interactions, and they benefit from sigma --> sigma*# interactions that control pi-selectivity. The evidence in favor of Anh-Felkin's sigma# --> sigma* hypothesis is weak. The electron-withdrawing sigma(C-F) in the 2-fluoropropanal-LiCN TS did not align anti to the incipient bond even though there was complete conformational freedom. The initial guess for the TS in which sigma(C-F) was held anti to sigma# optimized to what had lost the said geometrical relationship. Furthermore, in the TS for axial addition of LiCN to 2-ax-F-cyclohexanone, the net sigma --> sigma*# interaction was considerably larger than the net sigma# --> sigma* interaction. The relative TS energies require that the equatorial addition of LiCN to 2-ax-F-cyclohexanone be favored over the axial addition in good compliance with the available experimental results.  相似文献   

3.
Equilibria between the Z (tau1= 0 degrees) and E (tau1= 180 degrees) conformers of p-substituted phenyl acetates 4 and trifluoroacetates 5 (X = OMe, Me, H, Cl, CN, NO2) were studied by ab initio calculations at the HF/6-31G* and MP2/6-31G* levels of theory. The preference for the Z conformer, DeltaE(HF), was calculated to be 5.36 kcal mol(-1) and 7.50 kcal mol(-1) for phenyl acetate and phenyl trifluoroacetate (i.e., with X = H), respectively. The increasing electron-withdrawing ability of the phenyl substituent X increases the preference of the Z conformer. An excellent correlation with a negative slope was observed for both series between DeltaE of the E-Z equilibrium and the Hammett sigma constant. By using an appropriate isodesmic reaction, it was shown that electron-withdrawing substituents decrease the stability of both conformers, but the effect is higher with the E conformer. Electron-withdrawing phenyl substituents decrease the delocalization of the lone pair of the ether oxygen to the C=O antibonding orbital (nO--> pi*C=O) in both the E and Z forms and in both series studied; this effect is higher in the E conformer than in the Z conformer. The nO --> pi*C=O electron donation has a minimum value with tau1= 90 degrees and a maximum value with tau1= 0 degrees (the Z conformer), the value with tau1= 180 degrees (the E conformer) being between these two values, obviously due to steric hindrance. The effects of the phenyl substituents on the reactivity of the esters studied are discussed in terms of molecular orbital interactions. ED/EW substituents adjust the availability of the pi*C=O antibonding orbital to interact with the lone pair orbital of the attacking nucleophile and therefore affect the reactivity: EW substituents increase and ED substituents decrease it. Excellent correlations were observed between the rate coefficients of nucleophilic acyl substitutions and pi*C=O occupancies of the ester series 4 and 5.  相似文献   

4.
Calculation of the barriers for addition of the H2P(=O) and HC(=O) radicals to alkenes, at the CCSD(T)/aug-cc-pVDZ//BHandHLYP/6-311G** level, indicates that both radicals display ambiphilic behaviour. For the HC(=O) radical this behaviour occurs because a secondary orbital interaction of the type pi*(C=O)<--HOMO acts in conjunction with the primary SOMO<--HOMO interaction to balance the SOMO-->LUMO interaction. For the H2P(=O) radical, on the other hand, the much higher-lying LUMO (the sigma*P-O orbital) allows for only minimal secondary interaction, and this radical's ambiphilic behaviour is therefore reflective of a balance between SOMO-->LUMO and SOMO<--HOMO interactions.  相似文献   

5.
The electron transmission and dissociative electron attachment spectra of the 1-chloroalkyl benzene derivatives, C(6)H(5)(CH(2))(3)Cl and C(6)H(5)(CH(2))(4)Cl, and of the sulfur and silicon derivatives, C(6)H(5)SCH(2)Cl, C(6)H(5)Si(CH(3))(2)CH(2)Cl and C(6)H(5)CH(2)Si(CH(3))(2)CH(2)Cl, are presented for the first time. The relative Cl(-) fragment anion currents generated by electron attachment to the benzene pi* LUMO are measured in the series C(6)H(5)(CH(2))(n)Cl, with n = 1-4, and in the heteroatomic compounds. The Cl(-) yield reflects the rate of intramolecular electron transfer between the pi-system and the remote chlorine atom, which in turn depends on the extent of through-bond coupling between the localized pi* and sigma*(Cl-C) orbitals. In compounds C(6)H(5)(CH(2))(n)Cl the Cl(-) current rapidly decreases with increasing length of the saturated chain. This decrease is significantly attenuated when a carbon atom of the alkyl skeleton is replaced with a third-row heteroatom. This greater ability to promote through-bond coupling between the pi* and sigma*(Cl-C) orbitals is attributed to the sizably lower energy of the empty sigma*(S-C) and sigma*(Si-C) orbitals with respect to the sigma*(C-C) orbitals. In the sulfur derivative the increase of the Cl(-) current is larger than in the silicon analogue. In this case, however, other negative fragments are observed, due to dissociation of the S-C bonds.  相似文献   

6.
Time-dependent density functional theory (TD-DFT/B3LYP(AC)/cc-pVTZ/cc-pVTZ/6-311G//MP2/cc-pVTZ/cc-pVTZ/6-31G**) has been used to compute vertical excitation energies and oscillator strengths of the six low-lying excited states of four peralkylated disilanes, hexamethyldisilane (1), hexa-tert-butyldisilane (2), 1,6-disila[4.4.4]propellane (3), and 1,7-disila[5.5.5]propellane (4). The results provide an accurate interpretation of the reported UV absorption spectra of 1-4 in solution, and for 1 also in the gas phase up to 62,000 cm(-1). The excellent agreement of the calculated with the available experimental energies and oscillator strengths, and with magnetic circular (MCD) and linear (LD) dichroism, gives us confidence that the method will be useful for dependable interpretation of the electronic spectra of longer oligosilanes. Although the disilane chromophore finds itself in quite different environments in 1-4, its fundamental characteristics remain the same, with one important exception. In all four compounds, the first valence excited state is due to an electron promotion from the sigma(1) HOMO to the pi(1)* orbital, and the second valence excited state to a promotion from the sigma(1) HOMO to the sigma(1)* orbital. Surprisingly, however, it is only in 2, which has an extraordinarily long SiSi bond, that the terminating sigma(1)* orbital is the sigma*(SiSi) antibond, as anticipated, and the sigma sigma* transition has the expected very high oscillator strength. In 1, 3, and 4, the sigma*(SiSi) antibonding orbital is high in energy and does not play any role in low-energy excitations. Instead, the terminating orbital of the sigma(1)sigma(1)* excitation is represented by Si-alkyl antibonds, combined symmetrically with respect to rotation around the SiSi axis and antisymmetrically with respect to operations that interchange the two Si atoms. The common assumption that the characteristic intense sigma sigma* transitions of longer peralkylated oligosilanes extrapolate to the lowest sigma sigma* transition in common peralkylated disilanes is incorrect, and only the weak sigma pi* transitions extrapolate simply.  相似文献   

7.
Single-walled nanotubes (SWNTs) produced by plasma laser vaporization (PLV) and containing oxidized surface functional groups have been studied for the first time with NEXAFS. Comparisons are made to SWNTs made by catalytic synthesis over Fe particles in high-pressure CO, called HiPco material. The results indicate that the acid purification and cutting of single-walled nanotubes with either HNO3/H2SO4 or H2O2/H2SO4 mixtures produces the oxidized groups (O/C = 5.5-6.7%), which exhibit both pi*(CO) and sigma*(CO) C K-edge NEXAFS resonances. This indicates that both carbonyl (C=O) and ether C-O-C functionalities are present. Upon heating in a vacuum to 500-600 K, the pi*(CO) resonances are observed to decrease in intensity; on heating to 1073 K, the sigma*(CO) resonances disappear as the C-O-C functional groups are decomposed. Raman spectral measurements indicate that the basic tubular structure of the SWNTs is not perturbed by heating to 1073 K, based on the invariance of the ring breathing modes upon heating. The NEXAFS studies agree well with infrared studies which show that carboxylic acid groups are thermally destroyed first, followed by the more difficult destruction of ether and quinone groups. Single-walled nanotubes produced by the HiPco process, and not treated with oxidizing acids, exhibit an O/C ratio of 1.9% and do not exhibit either pi*(CO) or sigma*(CO) resonances at the detection limit of NEXAFS. It is shown that heating (to 1073 K) of the PLV-SWNTs containing the functional groups produces C K-edge NEXAFS spectra very similar to those seen for the HiPco material. The NEXAFS spectra are calibrated against spectra measured for a number of fused-ring aromatic hydrocarbon molecules containing various types of oxidized functional groups present on the oxidized SWNTs.  相似文献   

8.
Conformational preferences and orbital interactions of methyl chloroacetate (1), methyl bromoacetate (2) and methyl iodo-acetate (3) were analyzed using experimental infra-red data, theoretical calculations and NBO analyses. The conformational equilibria of compounds 1-3 can be represented by their cis and gauche rotamers. The gauche form of 1 is stable in the vapour phase and in a non-polar solvent, but the cis is predominant in a polar solvent. For 2 the gauche form is more stable than the cis, in both the vapour and liquid phases, but for compound 3 only the gauche form was observed both in vapour phase as in solution. These conformational preferences were attributed to the orbital interaction between two antibonding orbitals pi(C=O)(*)-->sigma(C-X)(*). This unexpected interaction was possibly due to the high (0.2) electron density on pi(C=O)(*), which results from the interaction between ether oxygen lone pair and pi(C=O)(*).  相似文献   

9.
The energies of the lowest-lying anion states of phenyl (C6H5N=C=O) and benzyl (C6H5CH2N=C=O) isocyanates have been determined experimentally in the gas phase for the first time using electron transmission spectroscopy (ETS), and their localization properties have been evaluated using HF/6-31G, MP2/6-31G*, and B3LYP/6-31G* calculations. The lowest-lying anion state of phenyl isocyanate, mainly of benzene ring character but with some contribution also from the N=C=O pi-system, lies at significantly higher energy than that of other benzenes substituted by pi-functionals, such as benzaldehyde or styrene. The scaling with the use of suitable empirical equations of the virtual orbital energies (VOEs) for orbitals with predominantly pi*(ring) character calculated for the neutral-state molecules leads to vertical attachment energies (VAEs) which closely correspond to those determined experimentally, whereas those calculated for the predominantly pi*(CO) and pi*(NC) orbitals (3rd and 4th LUMO, respectively) are significantly different from the corresponding measured values notwithstanding the fact that the calculations reproduce the shortening of the N=C and C=O double bonds.  相似文献   

10.
[structure: see text]. We found that the C=O.Sn distance in RCOSSnR'3 was shorter than the C=O.Ge distance in RCOSGeR'3 and theoretically confirmed that the orbital interactions between the nonbonding orbitals on the carbonyl oxygen (n(O)) and the sigma*(SnS) orbitals were important in regard to the shortness.  相似文献   

11.
A series of 5-fluoro-1-(2'-oxocycloalkyl)uracils (3-11) that are potentially novel radiation-activated prodrugs for the radiotherapy of hypoxic tumor cells have been synthesized to evaluate a relationship between the molecular structure and the reactivity of one-electron reductive release of antitumor 5-fluorouracil (1) in anoxic aqueous solution. All the compounds 3-11 bearing the 2'-oxo group were one-electron reduced by hydrated electrons (eaq-) and thereby underwent C(1')-N(1) bond dissociation to release 5-fluorouracil 1 in 47-96% yields upon radiolysis of anoxic aqueous solution, while control compounds (12, 13) without the 2'-oxo substituent had no reactivity toward such a reductive C(1')-N(1) bond dissociation. The decomposition of 2-oxo compounds in the radiolytic one-electron reduction was more enhanced, as the one-electron reduction potential measured by cyclic voltammetry in N,N-dimethylformamide became more positive. The efficiency of 5-fluorouracil release was strongly dependent on the structural flexibility of 2-oxo compounds. X-ray crystallographic studies of representative compounds revealed that the C(1')-N(1) bond possesses normal geometry and bond length in the ground state. MO calculations by the AM1 method demonstrated that the LUMO is primarily localized at the pi* orbital of C(5)-C(6) double bond of the 5-fluorouracil moiety, and that the LUMO + 1 is delocalized between the pi* orbital of 2'-oxo substituent and the sigma* orbital of adjacent C(1')-N(1) bond. The one-electron reductive release of 5-fluorouracil 1 in anoxic aqueous solution was presumed to occur from the LUMO + 1 of radical anion intermediates possessing a partial mixing of the antibonding C(2')=O pi* and C(1')-N(1) sigma* MO's, that may be facilitated by a dynamic conformational change to achieve higher degree of (pi* + sigma*) MO mixing.  相似文献   

12.
A systematic investigation on the cycloreversion reaction of the cycloadduct formed between substituted cyclopentadiene and p-benzoquinone (1-19) is reported at the B3LYP/6-311+G**//B3LYP/6-31G* level of theory. The computed activation barrier exhibits a fairly high sensitivity to the nature of substituents at the C7-position. Gibbs free energy of activation for 1 and 19 are found to be 20.3 and 30.1 kcal mol(-1), respectively, compared to 7, which is estimated to be 24.7 kcal mol(-1). Quantitative analysis of the electronic effects operating in both the cycloadduct as well as the corresponding transition state for the retro Diels-Alder (rDA) reaction performed using the natural bond orbital (NBO) and atoms in molecule (AIM) methods have identified important two-electron stabilizing interactions. Among four major delocalizations, sigma(C7-X) to sigma*(C1-C5) [and to sigma*(C2-C6)] is identified as the key contributing factor responsible for ground state C1-C5 bond elongation, which in turn is found to be crucial in promoting the rDA reaction. A good correlation between the population of antibonding orbital [sigma*(C1-C5)] of the ground state cycloadduct and Gibbs free energy of activation is observed. The importance of factors that modulate ground state structural features in controlling the energetics of rDA reaction is described.  相似文献   

13.
Three cis-3,4-bis(organosilyl)cyclobutenes were synthesized, and their thermal ring-opening reactions were studied. The ring-opening reaction of cis-3,4-bis(trimethylsilyl)cyclobutene proceeded remarkably faster than that of cis-3,4-dimethylcyclobutene. The significant rate acceleration was explained by assuming (i) stabilization of the transition state by electron delocalization from the cyclobutene HOMO to the Si-CH3 sigma* orbital, (ii) destabilization of the ground state by intramolecular interaction between the C-Si sigma orbitals and the pi orbital of cyclobutene, and (iii) through-space steric repulsion of the two bulky trimethylsilyl groups in a cis arrangement. The ring-opening reaction of unsymmetrical cis-3,4-bis(arylsilyl)cyclobutenes having electronically different arylsilyl groups was also examined. The inward preference increased in the order, p-CH3OC6H4-Si, C6H5-Si, p-CF3C6H4-Si, supporting the interpretation of the origin of the inward preference of silyl substituents on the basis of a stabilizing interaction between the cyclobutene HOMO and the Si-C sigma* orbital at the transition state.  相似文献   

14.
An electronic structure analysis is provided of the action of solvated FeO(2+), [FeO(H(2)O)(5)](2+), as a hydroxylation catalyst. It is emphasized that the oxo end of FeO(2+) does not form hydrogen bonds (as electron donor and H-bond acceptor) with H-bond donors nor with aliphatic C-H bonds, but it activates C-H bonds as an electron acceptor. It is extremely electrophilic, to the extent that it can activate even such poor electron donors as aliphatic C-H bonds, the C-H bond orbital acting as electron donor in a charge transfer type of interaction. Lower lying O-H bonding orbitals are less easily activated. The primary electron accepting orbital in a water environment is the 3sigma*alpha orbital, an antibonding combination of Fe-3d(z(2)) and O-2p(z), which is very low-lying relative to the pi*alpha compared with, for example, the sigma* orbital in O(2) relative to its pi*. This is ascribed to relatively small Fe-3d(z(2)) with O-2p(z) overlap, due to the nodal structure of the 3d(z(2)).The H-abstraction barrier is very low in the gas phase, but it is considerably enhanced in water solvent. This is shown to be due to strong screening effects of the dielectric medium, leading to relative destabilization of the levels of the charged [FeO(H(2)O)(5)](2+) species compared to those of the neutral substrate molecules, making it a less effective electron acceptor. The solvent directly affects the orbital interactions responsible for the catalytic reaction.  相似文献   

15.
The geometric and electronic structure of the untethered heme-peroxo-copper model complex [(F(8)TPP)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](ClO(4)) (1) has been investigated using Cu and Fe K-edge EXAFS spectroscopy and density functional theory calculations in order to describe its geometric and electronic structure. The Fe and Cu K-edge EXAFS data were fit with a Cu...Fe distance of approximately 3.72 A. Spin-unrestricted DFT calculations for the S(T) = 2 spin state were performed on [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) as a model of 1. The peroxo unit is bound end-on to the copper, and side-on to the high-spin iron, for an overall mu-eta(1):eta(2) coordination mode. The calculated Cu...Fe distance is approximately 0.3 A longer than that observed experimentally. Reoptimization of [(P)Fe(III)-(O(2)(2)(-))-Cu(II)(TMPA)](+) with a 3.7 A Cu...Fe constrained distance results in a similar energy and structure that retains the overall mu-eta(1):eta(2)-peroxo coordination mode. The primary bonding interaction between the copper and the peroxide involves electron donation into the half-occupied Cu d(z)2 orbital from the peroxide pi(sigma) orbital. In the case of the Fe(III)-peroxide eta(2) bond, the two major components arise from the donor interactions of the peroxide pi*(sigma) and pi*(v) orbitals with the Fe d(xz) and d(xy) orbitals, which give rise to sigma and delta bonds, respectively. The pi*(sigma) interaction with both the half-occupied d(z)2 orbital on the copper (eta(1)) and the d(xz) orbital on the iron (eta(2)), provides an effective superexchange pathway for strong antiferromagnetic coupling between the metal centers.  相似文献   

16.
To clarify the nature of five-center, six-electron (5c-6e) C(2)Z(2)O interactions, atoms-in-molecules (AIM) analysis has been applied to an anthraquinone, 1,8-(MeZ)(2)ATQ (1 (Z=Se), 2 (Z=S), and 3 (Z=O)), and a 9-methoxyanthracene system, 9-MeO-1,8-(MeZ)(2)ATC (4 (Z=Se), 5 (Z=S), and 6 (Z=O)), as well as 1-(MeZ)ATQ (7 (Z=Se), 8 (Z=S), and 9 (Z=O)) and 9-MeO-1-(MeZ)ATC (10 (Z=Se), 11 (Z=S), and 12 (Z=O)). The total electronic energy density (H(b)(r(c))) at the bond critical points (BCPs), an appropriate index for weak interactions, has been examined for 5c-6e C(2)Z(2)O and 3c-4e CZO interactions of the n(p)(O)sigma*(Z--C) type in 1-12. Some hydrogen-bonded adducts were also re-examined for convenience of comparison. The total electronic energy densities varied in the following order: OO (3: H(b)(r(c))=0.0028 au)=OO (6: 0.0028 au)>OO (9: 0.0025 au)> or =NNHF (0.0024 au)> or =OO (12: 0.0023 au)>H(2)OHOH (0.0015 au)>SO (8: 0.0013 au)=SO (2: 0.0013 au)> or =SO (11: 0.0012 au)=SO (5: 0.0012 au)>HFHF (0.0008 au)=SeO (10: 0.0008 au)=SeO (4: 0.0008 au)> or =SeO (1: 0.0007 au)> or =SeO (7: 0.0006 au)>HCNHF (-0.0013 au). H(b)(r(c)) values for SO were predicted to be smaller than the hydrogen bond of H(2)OHOH and H(b)(r(c)) values for SeO are very close to or slightly smaller than that for HFHF in both the ATQ and 9-MeOATC systems. In the case of Z=Se and S, H(b)(r(c)) values for 5c-6e C(2)Z(2)O interactions are essentially equal to those for 3c-4e CZO if Z is the same. The results demonstrate that two n(p)(O)sigma*(Z--C) 3c-4e interactions effectively connect through the central n(p)(O) orbital to form the extended hypervalent 5c-6e system of the sigma*(C--Z)n(p)(O)sigma*(Z--C) type for Z=Se and S in both systems. Natural bond orbital (NBO) analysis revealed that n(s)(O) also contributes to some extent. The electron charge densities at the BCPs, NBO analysis, and the total energies calculated for 1-12, together with the structural changes in the PhSe derivatives, support the above discussion.  相似文献   

17.
The origin of conformational preference in alpha-cyano-alpha-fluorophenylacetic acid (CFPA) methyl ester that is a model system of alpha-cyano-alpha-fluoro-p-tolylacetic acid (CFTA) esters was theoretically investigated by means of DFT and MP2 calculations. Two stable conformations having the C-F bond syn and anti to the C=O bond, respectively, were obtained for CFPA methyl ester. A small energy difference (0.9 kcal mol-1 at the MP2(fc)/6-31++G(d,p)) was found between the two conformations. From the molecular orbital analysis based on the Natural Bond Orbital analysis and supported by calculations using the Orbital Deletion Procedure technique, we found that sigma-(sigma*+pi*)(C=O) and sigma-sigma*(Ph) and pi(Ph)-sigma* hyperconjugations are the main factors responsible for the conformational preference. The role of the fluorine atom on the stereogenic center was also clarified.  相似文献   

18.
Theoretical examination [B3LYP/6-31G(d,p), PP/IGLO-III//B3LYP/6-31G(d,p), and NBO methods] of six-membered cyclohexane 1 and carbonyl-, thiocarbonyl-, or methylidene-containing derivatives 2-27 afforded precise structural (in particular, C-H bond distances) and spectroscopic (specifically, one-bond (1)J(C)(-)(H) NMR coupling constants) data that show the consequences of stereoelectronic hyperconjugative effects in these systems. Major observations include the following. (1) sigma(C)(-)(H)(ax)() -->(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() (Y = O, S, or CH(2)) hyperconjugation leads to a shortening (strengthening) of the equatorial C-H bonds adjacent to the pi group. This effect is reflected in smaller (1)J(C)(-)(H)(ax)() coupling constants relative to (1)J(C)(-)(H)(eq)(). (2) Comparison of the structural and spectroscopic consequences of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) hyperconjugation in cyclohexanone 2, thiocyclohexanone 3, and methylenecyclohexane 4 suggests a relative order of acceptor orbital ability C=S > C=O > C=CH(2), which is in line with available pK(a) data. (3) Analysis of the structural and spectroscopic data gathered for heterocyclic derivatives 5-12 reveals some additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y), pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)(), n(X) --> sigma(C)(-)(H)(ax)(), n(beta)(O) --> sigma(C)(-)(H)(eq)(), and sigma(S)(-)(C) --> sigma(C)(-)(H)(eq)() stereoelectronic effects that is, nevertheless, attenuated by saturation effects. (4) Modulation of the C=Y acceptor character of the exocyclic pigroup by conjugation with alpha-heteroatoms O, N, and S in lactones, lactams, and methylidenic analogues 13-24 results in decreased sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugation. (5) Additivity of sigma(C)(-)(H)(ax)() --> pi(C)(=)(Y) and pi(C)(=)(Y) --> sigma(C)(-)(H)(ax)() hyperconjugative effects is also apparent in 1,3-dicarbonyl derivative 25 (C=Y equal to C=O), 1,3-dithiocarbonyl derivative 26 (C=Y equal to C=S), and 1,3-dimethylidenic analogue 27 (C=Y equal to C=CH(2)).  相似文献   

19.
Kinetic studies of the reactions of alpha-chloroacetanilides (YC6H4NRC(=O)CH2Cl; R = H (5) and CH3 (6)) with benzylamines (NH2CH2C6H4X) were carried out in dimethyl sulfoxide at 55.0 degrees C. The Br?nsted betaX values were in the range from 0.6 to 0.9 and cross-interaction constants phoXY were positive: phoXY = +0.21 and +0.18 for 5 and 6, respectively. The rates were faster with 6 than with 5 and inverse secondary kinetic isotope effects involving deuterated benzylamine (ND2CH2C6H4X) nucleophiles, kH/kD < 1.0, were obtained. Based on these and other results, a stepwise mechanism with rate-limiting expulsion of the chloride leaving group from a zwitterionic tetrahedral intermediate, T+/-, is proposed. In this mechanism, a prior carbonyl addition to T+/- is followed by a bridged type transition state to expel the chloride. An enolate-like transition state in which the developing negative charge on C(alpha) delocalizes toward the carbonyl group (nC-->pi*(C=O) interaction) is not feasible for the present series of reactions due to a stronger charge transfer involving the lone pair on the anilino nitrogen (nAN-->pi*(C=O) interaction).  相似文献   

20.
H(D) Rydberg atom photofragment translational spectroscopy has been used to investigate the dynamics of H(D) atom loss C6H5SH(C6H5SD) following excitation at many wavelengths lambda phot in the range of 225-290 nm. The C6H5S cofragments are formed in both their ground (X(2)B1) and first excited ((2)B2) electronic states, in a distribution of vibrational levels that spreads and shifts to higher internal energies as lambda(phot) is reduced. Excitation at lambda(phot) > 275 nm populates levels of the first (1)pi pi* state, which decay by tunnelling to the dissociative (1)pi sigma* state potential energy surface (PES). S-H torsional motion is identified as a coupling mode facilitating population transfer at the conical intersection (CI) between the diabatic (1)pi pi* and (1)pi sigma* PESs. At shorter lambda(phot), the (1)pi sigma* state is deduced to be populated either directly or by efficient vibronic coupling from higher (1)pipi* states. Flux evolving on the (1)pi sigma* PES samples a second CI, at longer R(S-H), between the diabatic (1)pi sigma* and ground ((1)pi pi) PESs, where the electronic branching between ground and excited state C6H5S fragments is determined. The C6H5S(X(2)B1) and C6H5S((2)B2) products are deduced to be formed in levels with, respectively, a' and a' vibrational symmetry-behavior that reflects both Franck-Condon effects (both in the initial photoexcitation step and in the subsequent in-plane forces acting during dissociation) and the effects of the out-of-plane coupling mode(s), nu11 and nu16a, at the (1)pi sigma*/(1)pi pi CI. The vibrational state assignments enabled by the high-energy resolution of the present data allow new and improved estimations of the bond dissociation energies, D0(C6H5S-H) < or = 28,030 +/- 100 cm(-1) and D0(C6H5S-D) < or = 28,610 +/- 100 cm(-1), and of the energy separation between the X(2)B1 and (2)B2 states of the C6H5S radical, T(00) = 2800 +/- 40 cm(-1). Similarities, and differences, between the measured energy disposals accompanying UV photoinduced X-H (X = S, O) bond fission in thiophenol and phenol are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号