首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion‐induced delamination of an epoxy coating on the AISI/SAE 1045 carbon steel was studied under a humid atmospheric condition (temperature of 25 °C, 1 standard atmospheric pressure, relative humidity of 90%) by the technique of scanning Kelvin probe force microscopy (SKPFM). Surface‐polished 1045 samples were first cold‐coated with the epoxy and then subject to the atmospheric corrosion under the specified condition. At predetermined time intervals, surface Volta potential differences of the samples were measured using the SKPFM over the dry surface of epoxy coating. The map of Volta potential differences demonstrated high contrasts among three characteristic zones: intact steel‐epoxy interface, delaminated interface, and interface with active corrosion, which was then linked to the actual corrosion potential of the steel (measured using a potentiostat with respect to a saturated calomel electrode) based on a rigorous calibration procedure. It was found that the SKPFM was able to provide direct and nondestructive detection of early active corrosion and coating delamination on steels at a submicroscopic resolution, which outperformed the conventional electrochemical techniques for the same purposes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The mechanical and electrical properties of CdTe tetrapod-shaped nanocrystals have been studied with atomic force microscopy. Tapping mode images of tetrapods deposited on silicon wafers revealed that they contact the surface with three of its arms. The length of these arms was found to be 130+/-10 nm. A large fraction of the tetrapods had a shortened vertical arm as a result of fracture during sample preparation. Fracture also occurs when the applied load is a few nanonewtons. Compression experiments with the atomic force microscope tip indicate that tetrapods with the shortened vertical arm deform elastically when the applied force was less than 50 nN. Above 90 nN additional fracture events occurred that further shortened the vertical arm. Loads above 130 nN produced irreversible damage to the other arms as well. Current-voltage characteristics of tetrapods deposited on gold revealed a semiconducting behavior with a current gap of approximately 2 eV at low loads (<50 nN) and a narrowing to about 1 eV at loads between 60 and 110 nN. Atomistic force field calculations of the deformation suggest that the ends of the tetrapod arms are stuck during compression so that the deformations are due to bending modes. Empirical pseudopotential calculation of the electron states indicates that the reduction of the current gap is due to electrostatic effects, rather than strain deformation effects inside the tetrapod.  相似文献   

3.
The morphology and mechanical properties of poly-(3-octylthiophene) P3OT films thin has been studied by scanning force microscopy techniques. On these films we find self-assembled layered structures that appear regardless of the preparation conditions, that is, spin-coating or drop-casting, of the solvent concentration or of the type of substrate. Using the drop-casting method for sample preparation these layered structures are hardly visible due to the high surface roughness, while using spin-coating these structures are the main topographic feature on the surface. These structures have typically one or two layers, even though occasionally up to four layers have been observed. Each layer has a height of 4-5 nm, which is associated to crystalline P3OT domains and lay on the polymer film. The size of these structures increases with increasing concentration of the P3OT in the solvent. We find well differentiated morphological, electrostatic as well as mechanical properties for the self-assembled structures as compared to the rest of the polymer film. Finally, the growth rate of these structures has been studied.  相似文献   

4.
5.
We have developed a wet-chemistry procedure to attach a 10-40 nm colloidal gold nanoparticle to the top of a scanning probe microscopy (SPM) probe tip, making experiments of single nanoparticle interaction possible. This procedure of particle attachment is flexible and can be modified to attach nanoparticles of different kinds and sizes. The single-nanoparticle-terminated tips also have potential in various other applications, such as probes of enhanced sensitivity for optical and magnetic modes SPM.  相似文献   

6.
In this review we describe a family of organic-based host frameworks which can accommodate guest molecules. The aim of the study is to test the adjustability of this class of mimic structures that may lead to new interesting functions. Emphasis of our research is placed upon four aspects: 1) thermal properties, 2) surface photochemistry, 3) fullerene adsorption, and 4) guest inclusion. It is envisioned that such approach of nanoporous molecular networks might be developed into a new family of useful soft fr...  相似文献   

7.
Solutions of monodisperse monolayer-protected clusters (MPCs) of gold can be used as multivalent redox mediators in electrochemical experiments due to their quantized double-layer charging properties. We demonstrate their use in scanning electrochemical microscopy (SECM) experiments wherein the species of interest (up to 2-electron reduction or 4-electron oxidation from the native charge-state of the MPCs) is generated at the tip electrode, providing a simple means to adjust the driving force of the electron transfer (ET). Approach curves to perfectly insulating (Teflon) and conducting (Pt) substrates are obtained. Subsequently, heterogeneous ET between MPCs in 1,2-dichloroethane and an aqueous redox couple (Ce(IV), Fe(CN)63-/4-, Ru(NH3)63+, and Ru(CN)64-) is probed with both feedback and potentiometric mode of SECM operation. Depending on the charge-state of the MPCs, they can accept/donate charge heterogeneously at the liquid-liquid interface. However, this reaction is very slow in contrast to ET involving MPCs at the metal-electrolyte interface.  相似文献   

8.
It is well known that scanning probe techniques such as scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) routinely offer atomic scale information on the geometric and the electronic structure of solids. Recent developments in STM and especially in non-contact AFM have allowed imaging and spectroscopy of individual molecules on surfaces with unprecedented spatial resolution, which makes it possible to study chemistry and physics at the single molecule level. In this feature article, we first review the physical concepts underlying image contrast in STM and AFM. We then focus on the key experimental considerations and use selected examples to demonstrate the capabilities of modern day low-temperature scanning probe microscopy in providing chemical insight at the single molecule level.  相似文献   

9.
Scanning force (SFM) and scanning tunneling (STM) microscopies are suitable techniques for the investigation of the structure of organic monolayers. Results are presented on thioalkane monolayers and thiolipid monolayers on gold. Both molecules attach covalently to the gold surface. STM images of the self assembled dodecanethiol layer display the molecular order of the film and reveal the presence of defects at the molecular scale. Moreover, domains and domain boundaries can be distinguished. Thiolipid layers on gold have been observed by SFM. The monolayer separates in solid-analogous star shaped domains and fluid-analogous domains. Imaging under water demonstrates the stability of the layer.  相似文献   

10.
The effect of salts on adsorbed polyelectrolyte conformations has been studied extensively over the past three decades. Previous researchers have proposed that increasing salt concentration results in larger loops and tails for weak polyelectrolytes adsorbed on a surface. However, no experimental verification of this theory has been published. In this work, we present experimental verification acquired by "pulling" single molecules of a polyelectrolyte from a mica surface using a scanning probe technique. We also present a new method for analyzing changes in adsorbed polymer tail lengths. We demonstrate that increasing solution salt concentration correlates with both loop and tail lengths of an adsorbed low charge density cationic polyacrylamide on a mica substrate.  相似文献   

11.
《Progress in Surface Science》2006,81(2-3):112-140
This paper focuses on the nano-oxidation of a silicon surface using scanning probe microscopes in air ambient and in UHV. Special emphasis is put in air ambient on the preparation of the surfaces and on the oxidation mechanism. The characteristics of the patterned nanostructures are reviewed versus the parameters which govern the process (tip–surface voltage, tip speed, humidity) as well as the kinetics models of the oxidation process. The oxide patterns can act as robust masks for dry or wet etching. Fabrication of nanostructures is presented and allows to realize electronic nanodevices. In UHV, there is no direct nano-oxidation of the surface by the microscope tip. First the surface is hydrogenated, second a local hydrogen desorption is performed with the STM tip and finally the bare desorbed area is exposed to oxygen. The desorption process is analyzed versus tip–surface voltage and tunneling current. The oxidation of a desorbed area using molecular or atomic oxygen is actually difficult to achieve.  相似文献   

12.
In recent years, the concept of microscopy and the ability to study processes at a truly molecular level have been revolutionised by the development of a family of instruments based on acquiring data through the scanning of a proximal probe across a surface. Scanning Probe Microscopes (SPMs) enable surface-confined structures to be resolved at ?ngstrom-resolution, in real time, and under a variety of controllable conditions. Despite initial difficulties, much progress has been in the application of this technology to the high-resolution analysis of biological systems; these have varied from complex cellular systems to molecular biopolymers. Studying the interactions of protein with surfaces has been intrinsic to the development of our understanding of blood coagulation, fibrinolysis, thrombus formation and the synthesis of biocompatible materials. The specific interactions of metalloproteins and enzymes with electrode surfaces remains central to the understanding of the bioelectrochemical processes and to the development of biosensing devices. Though ellipsometry, Raman, microcalorimetry, surface plasmon resonance, and other spectroscopic methods, can provide much information on these interfaces, the acquired data are averaged over a large number of molecular species with a low spatial resolution. Proximal probe methods have much to offer in this regard and have revolutionized our ability to monitor such interactions.  相似文献   

13.
Micro- and nanoscale surface modification using scanning probe microscopy techniques in combination with electrochemically induced surface structuring provides a maskless in situ fabrication strategy enabling deposition or etching of three-dimensional nanostructures. This current opinion article focuses on scanning electrochemical probe microscopy techniques highlighting recent progress in nanoscale 3D surface modification along with a spotlight on approaches of practical relevance.  相似文献   

14.
A technique is presented that allows to obtain information about sample surface topography and local electrical surface properties simultaneously. A scanning electrical force microscope is used for that purpose which is based on an atomic force microscope (AFM) working in the dynamical mode. Different information channels contained in the cantilever excitation spectrum are separated by a lock-in technique. The physical content of the technique is discussed in detail and the influence of surface topography on the non-topographic imaging is demonstrated. Finally, the real advantages of cross-sectional sample preparation (as known from electron microscopy) for this kind of scanning probe microscopy with respect to various applications is presented.  相似文献   

15.
16.
The chemical conversion of carbon dioxide (\(\hbox {CO}_2\)) has been intensively studied because the molecule is responsible for global warming. Rational design of catalysts plays an important role in converting \(\hbox {CO}_2\) into value-added compounds. Understanding the interaction between \(\hbox {CO}_2\) and surfaces of catalysts is a prerequisite to preparing high-performance catalysts. This review focuses on the investigations of \(\hbox {CO}_2\) molecules on single crystalline surfaces studied by low-temperature scanning tunneling microscopy. Molecular adsorption, diffusion, and conversion on metal surfaces, metal oxide surfaces, and surfaces decorated by metal-organic frameworks are summarized.  相似文献   

17.
Nephila clavipes dragline silk microstructure has been investigated by scanning transmission X-ray microscopy (STXM), a technique that allows quantitative mapping of the level of orientation of the peptide groups at high spatial resolution (<50 nm). Maps of the orientation parameter P2 have been derived for spider silk for the first time. Dragline silk presents a very fine microstructure in which small, highly oriented domains (average area of 1800 nm2, thus clearly bigger than individual beta-sheet crystallites) are dispersed in a dominant, moderately oriented matrix with several small unoriented domains. Our results also highlight the orientation of the noncrystalline fraction in silk, which has been underestimated in numerous structural models. No evidence of either a regular lamellar structure or any periodicity along the fiber was observed at this spatial resolution. The surface of fresh spider silk sections consists of a approximately 30-120 nm thick layer of highly oriented protein chains, which was found to vary with the reeling speed, where web building (0.5 cm/s) and lifeline (10 cm/s) spinning speeds were investigated. While the average level of orientation of the protein chains is unaffected by the spinning speed, STXM measurements clearly highlight microstructure differences. The slowpull fiber contains a larger fraction of highly oriented domains, while the protein chains are more homogeneously oriented in the fastpull fiber. In comparison, cocoon silk from the silkworm Bombyx mori presents a narrower orientation distribution. The strength-extensibility combination found in spider dragline silk is associated with its broad orientation distribution of highly interdigitated and unoriented domains.  相似文献   

18.
Dry films formed by surfactant-stabilized, peroxide-initiated styrene-butyl acrylate latex were examined by atomic and electric force microscopy (AFM and EFM). The effects of latex serum components on the films were observed by subjecting the latex to extensive dialysis prior to film formation, and comparing the results to as-prepared latex. The films formed with the dialyzed latex are smoother (as evidenced by roughness and fractal dimension measurements) than the films from the as-prepared latex, but they display large electric force gradients between neighboring domains. The films made with the as-prepared latex have the highest electric uniformity, with a maximum potential variation lower than 80 mV, while this reaches 200 mV in the dialyzed latex film.  相似文献   

19.
To date, supramolecular chemistry is an ever growing research field owing to its crucial role in molecular catalysis, recognition, medicine, data storage and processing as well as artificial photosynthetic devices.Different isolated supramolecules were prepared by molecular self-assembly on surfaces. This review mainly focuses on supramolecular aggregations on noble metal surfaces studied by scanning tunneling microscopy, including dimers, trimers, tetramers, pentamers, wire-like assemblies and Sierpin′ ski triangular fractals. The variety of self-assembled structures reflects the subtle balance between intermolecular and molecule–substrate interactions, which to some extent may be controlled by molecules, substrates and the molecular coverage. The comparative study of different architectures helps identifying the operative mechanisms that lead to the structural motifs. The application of these mechanisms may lead to novel assemblies with tailored physicochemical properties.  相似文献   

20.
Cryo-etch-HRSEM is introduced as a useful method for exploring colloidal systems. The method fast freezes an aqueous sample (to -105 degrees C in 6-7 ms), removes some or all of the surface water by sublimation (etching), and magnifies the resulting colloidal structure by up to a million. Three new structurally similar gemini surfactants served to illustrate the technique. One gemini formed a gel whose delicate fractal-like molecular web could be observed after 10-min etching. A second formed a coacervate with a more hydrated porous structure. The third displayed a "bumpy" surface consistent with spherical vesicles projecting from the vitreous ice. The information-content of cryo-etch-HRSEM is pictorial but distinctive in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号