首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In this paper, we firstly consider a Lotka–Volterra predator–prey model with impulsive constant releasing for natural enemies and a proportion of killing or catching pests at fixed moments, and we have proved that there exists a pest-eradication periodic solution which is globally asymptotically stable. Further, we extend the model for the population to move in a two-patch environment. The effects of population dispersal and impulsive control tactics are investigated, i.e. we chiefly address the question of whether population dispersal is beneficial or detrimental for pest persistence. To do this, some special cases are theoretically investigated and numerical investigations are done for general case. The results indicate that for some ranges of dispersal rates, population dispersal is beneficial to pest control, but for other ranges, it is harmful. These clarify that we can get some new effective pest control strategies by controlling the dispersal rates of pests and natural enemies.  相似文献   

2.
Based on the classical stage-structured model and Lotka–Volterra predator–prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the ‘pest-extinction’ (‘prey-eradication’) periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator–prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.  相似文献   

3.
基于脉冲微分方程理论,考虑到在现实生活中,种群内部和种群之间都存在相互竞争,故本文在捕食与被捕食系统中引入竞争关系,建立了具有Hassell-Varley功能性反应的一类食饵与一类捕食者系统.利用比较定理得到此系统的有界性和生物学家比较关注的系统持久性的充分条件,即定理3.1和定理3.2.最后本文对得到的结论进行了阐释,并给出了相应的生物学意义.  相似文献   

4.
According to biological and chemical control strategy for pest control, we investigate the dynamic behavior of a Holling II functional response predator–prey system concerning impulsive control strategy-periodic releasing natural enemies and spraying pesticide at different fixed times. By using Floquet theorem and small amplitude perturbation method, we prove that there exists a stable pest-eradication periodic solution when the impulsive period is less than some critical value. Further, the condition for the permanence of the system is also given. Numerical results show that the system we consider can take on various kinds of periodic fluctuations and several types of attractor coexistence and is dominated by periodic, quasiperiodic and chaotic solutions, which implies that the presence of pulses makes the dynamic behavior more complex. Finally, we conclude that our impulsive control strategy is more effective than the classical one if we take chemical control efficiently.  相似文献   

5.
With the help of a continuation theorem based on coincidence degree theory, we establish necessary and sufficient conditions for the existence of positive periodic solutions in a generalized semi-ratio-dependent predator–prey system with time delays and impulses, which covers many models appeared in the literature. When the results reduce to the semi-ratio-dependent predator–prey system without impulses, they generalize and improve some known ones.  相似文献   

6.
害虫治理的病毒感染模型   总被引:2,自引:2,他引:0  
研究了食饵受病毒感染且捕食者具有Beddington-DeAngelis功能性反应的生态流行病模型,此模型考虑的是脉冲释放病毒颗粒和自然天敌. 利用Floquet乘子理论、小振幅扰动技巧和比较定理证明了害虫根除周期解的全局渐近稳定性以及系统持续生存的充分条件.结论为现实的害虫管理提供了有效的策略依据.  相似文献   

7.
By using a continuation theorem based on coincidence degree theory, we establish easily verifiable criteria for the existence of multiple periodic solutions in delayed Gause-type ratio-dependent predator–prey systems with numerical responses. As corollaries, some applications are listed.  相似文献   

8.
In an ecosystem multiple prey species often share a common predator and the interactions between the preys are neutral. In view of these facts and based on a multiple species prey–predator system with Holling IV and II functional responses, an impulsive differential equation to model the process of periodically releasing natural enemies and spraying pesticides at different fixed times for pest control is proposed and investigated. It is proved that there exists a locally asymptotically stable pest-eradication periodic solution under the assumption that the impulsive period is less than some critical value (or the release amount of the predator is greater than another critical value). Permanence conditions are established when the impulsive period is greater than another critical value (or the release amount of the predator is less than some critical value). Numerical results show that the system we consider has more complex dynamics including period solution, quasi-periodic oscillation, chaos, intermittency and crises.  相似文献   

9.
According to biological and chemical control strategy for pest, we investigate the dynamic behavior of a Lotka–Volterra predator–prey state-dependent impulsive system by releasing natural enemies and spraying pesticide at different thresholds. By using Poincaré map and the properties of the Lambert WW function, we prove that the sufficient conditions for the existence and stability of semi-trivial solution and positive periodic solution. Numerical simulations are carried out to illustrate the feasibility of our main results.  相似文献   

10.
One predator two prey system is a research topic which has both the theoretical and practical values.This paper provides a natural condition of the existence of stable pcsitive steady-state solutions for the one predator two prey system.Under this conditon we study the existence of the positive steady-state solutions at vicinity of the triple eigenvalue by implicit function theorem,discuss the positive stable solution problem bifureated from the semi-trivial solutions containing two positive components with the help of bifurcation and perturbation methods.  相似文献   

11.
A delayed predator-prey model concerning impulsive spraying pesticides and releasing natural enemies is proposed and investigated,in which both the prey and the predator have a history that takes them through two stages:immature and mature.The global attractiveness of the pest-eradication periodic solution is discussed,and sufficient condition is obtained for the permanence of the system.Further,numerical simulations show that there is a characteristic sequence of bifurcations leading to a chaotic dynamics,which implies that the system with constant periodic impulsive perturbations admits rich and complex dynamics.  相似文献   

12.
For pest control in agriculture, we investigate the dynamics of a stage-structured predator-prey Gompertz system with impulsive spraying pesticide and releasing of natural enemies at different fixed moment. Using the stroboscopic map and comparison theorem, we obtain the sufficient conditions for the global attractivity of the mature predator-extinction periodic solution and the permanence of the system. Numerical simulations are inserted to verify the feasibility of the theoretical results, which show that the impulsive control plays a key role on the permanence of the system and also provide tactical basis for pest control.  相似文献   

13.
In this paper, by using the continuation theorem of coincidence degree theory, the existence of multiple positive periodic solutions for a generalized delayed predator–prey system with stocking is established. When our result is applied to a delayed predator–prey system with nonmonotonic functional response and stocking, we establish the sufficient condition for the existence of multiple positive periodic solutions for the system.  相似文献   

14.
Combining biological and chemical control has been an efficient strategy to combat the evolution of pesticide resistance. Continuous releases of natural enemies could reduce the impact of a pesticide on them and the number to be released should be adapted to the development of pesticide resistance. To provide some insights towards this adaptation strategy, we developed a novel pest–natural enemy model considering both resistance development and inoculative releases of natural enemies. Three releasing functions which ensure the extinction of the pest population are proposed and their corresponding threshold conditions obtained. Aiming to eradicate the pest population, an analytic formula for the number of natural enemies to be released was obtained for each of the three different releasing functions, with emphasis on their biological implications. The results can assist in the design of appropriate control strategies and decision-making in pest management.  相似文献   

15.
In this paper, by using pollution model and impulsive delay differential equation, we investigate the dynamics of a pest control model with age structure for pest by introducing a constant periodic pesticide input and releasing natural enemies at different fixed moment. We assume only the pests are affected by pesticide. We show that there exists a global attractive pest-extinction periodic solution when the periodic natural enemies release amount μ1 and pesticide input amount μ2 are larger than some critical value. Further, the condition for the permanence of the system is also given. By numerical analyses, we also show that constant maturation time delay, pulse pesticide input and pulse releasing of the natural enemies can bring obvious effects on the dynamics of system. We believe that the results will provide reliable tactic basis for the practical pest management.  相似文献   

16.
The aim of this paper is to apply methods from optimal control theory, and from the theory of dynamic systems to the mathematical modeling of biological pest control. The linear feedback control problem for nonlinear systems has been formulated in order to obtain the optimal pest control strategy only through the introduction of natural enemies. Asymptotic stability of the closed-loop nonlinear Kolmogorov system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton–Jacobi–Bellman equation, thus guaranteeing both stability and optimality. Numerical simulations for three possible scenarios of biological pest control based on the Lotka–Volterra models are provided to show the effectiveness of this method.  相似文献   

17.
The natural linear orderings of an n-dimensional cube over a finite set A are investigated. We obtain a characterization theorem for these orderings extending earlier result, e.g., for natural orderings on finite Boolean lattices, as given in [5.], 193–197.  相似文献   

18.
Sufficient criteria are established for the existence of positive periodic solutions of discrete nonautonomous predator–prey systems with the Beddington–DeAngelis functional response using a continuation theorem.  相似文献   

19.
In this paper we establish Riemann–Roch and Lefschtez–Riemann–Roch theorems for arbitrary proper maps of finite cohomological dimension between algebraic stacks in the sense of Artin. The Riemann–Roch theorem is established as a natural transformation between the G-theory of algebraic stacks and topological G-theory for stacks: we define the latter as the localization of G-theory by topological K-homology. The Lefschtez–Riemann–Roch is an extension of this including the action of a torus for Deligne–Mumford stacks. This generalizes the corresponding Riemann–Roch theorem (Lefschetz–Riemann–Roch theorem) for proper maps between schemes (that are also equivariant for the action of a torus, respectively) making use of some fundamental results due to Vistoli and Toen. A key result established here is that topological G-theory (as well as rational G-theory) has cohomological descent on the isovariant étale site of an algebraic stack. This extends cohomological descent for topological G-theory on schemes as proved by Thomason.  相似文献   

20.
In this paper, we study a periodic predator–prey system with prey impulsively unilateral diffusion in two patches. Firstly, based on the results in [41], sufficient conditions on the existence, uniqueness and globally attractiveness of periodic solution for predator-free and prey-free systems are presented. Secondly, by using comparison theorem of impulsive differential equation and other analysis methods, sufficient and necessary conditions on the permanence and extinction of prey species x with predator have other food source are established. Finally, the theoretical results both for non-autonomous system and corresponding autonomous system are confirmed by numerical simulations, from which we can see some interesting phenomena happen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号