首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of the η1-acetylide complex [(η5-C5H5)(CO)(NO)W---CC---C(CH3)3]Li (4) with 1,2-diiodoethane in THF at −78 °C, followed by the addition of Li---CC---R [R=C(CH3)3, C6H5, Si(CH3)3, 6a6c] or n-C4H9Li and protonation with H2O, afforded the corresponding oxametallacyclopentadienyl complexes (η5-C5H5)W(I)(NO)[η2-O=C(CC---R)CH=CC(CH3)3] (7a7c), 8c and (η5-C5H5)W(I)(NO)[η2-O=C(n-C4H9)CH=CC(CH3)3] (9). The formation of these metallafuran derivatives is rationalized by the electrophilic attack of 1,2-diiodoethane onto the metal center of 4 to form first the neutral complex [(η5-C5H5)(I)(CO)(NO)W---CC---C(CH3)3] (5). Subsequent nucleophilic addition of Li---CC---R 6a6c or n-C4H9Li and a reductive elimination step followed by protonation leads to the products 7a7c and 9. One reaction intermediate could be trapped with CF3SO3CH3 and characterized by a crystal structure analysis. The identity of another intermediate was established by infrared spectroscopic data. The oxametallacyclopentadienyl complex 10 forms in the presence of excess 1,2-diiodoethane through an alternative pathway and crystallizes as a clathrate containing iodine.  相似文献   

2.
Alkyloxy- and aryloxy-functionalized titanocenes of type [Ti](Cl)(OR) (R = Me (2), CH2PPh2 (3), CH2Fc (4), C6H5 (5), C6H4-4-CN (6), C6H4-4-NO2 (7), C6H4-4-Me (8), C6H4-4-OMe (9), C6H4-4-C(O)Me (10), C6H4-4-CO2Me (11), C6H4-3-NO2 (12); [Ti] = (η5-C5H4SiMe3)2Ti; Fc = (η5-C5H4)(η5-C5H5)Fe) were synthesized by the reaction of [Ti]Cl2 (1) with ROH in a 1:1 molar ratio and in presence of Et2NH. Diaryloxy-titanocenes (e.g., [Ti](OC6H4-4-NO2)2 (13)) are accessible, when the ratio of 1 and ROH is changed to 1:2. This synthesis methodology also allowed the preparation of dinuclear complexes of composition ([Ti](Cl))2(μ-OC6H4O) (14) and ([Ti](Cl)(μ-OC6H4-4))2 (15) by the reaction of 1 with hydroquinone or 1,1′-dihydroxybiphenyl in a 2:1 stoichiometry.Cyclic voltammetric studies show the characteristic [Ti(IV)/Ti(III)] reductions. It was found that the potentials of the alkyloxy titanocenes 24 do not differ, while for the aryloxy-titanocenes 515 the reduction potentials correlate linearly with the σp/m Hammett substituent constants showing a strong influence of the substituents on the electron density at titanium.The structures of titanocenes 4, 5, 9, and 1113 in the solid state are reported. Typical for these organometallic sandwich compounds is a distorted tetrahedral coordination geometry around titanium with D1–Ti–D2 angles (D1, D2 = centroids of the cyclopentadienyl ligands) of ca. 130 °. In comparison to FcCH2O-functionalized 4, for the aryloxy-titanocenes 5, 9, and 1113 a significant larger Ti–O–C angle was found confirming electronic interactions between the titanium atom and the appropriate aryl group.  相似文献   

3.
Treatment of (η5-C5H5)2Rh2(CO)η1-Ph2P(CH2)n PPh2(μ-η1:η1-CF3C2CF3) (I) with (η5-CH3C5H4)Mn(CO)2(thf) or Cr(CO)5(thf) gives the hetero-trinuclear products (η-C5H5)2Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2)nPPh2(η-CH3C5H3C4)Mn(CO2) (II, n = 1–4) and (η5-C5H5)2Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2)nPPh2Cr(CO)5 (IV, n = 1–4) in good yields. In these products, the configuration of the CO and bisphosphine units on the Rh-Rh bond is trans. Related reactions between (η5:η5-C5H4CH2C5H4)Rh2(CO)η1-Ph2P(CH2)nPPh2(μ-η1:η1- (V) and the same solvated manganese and chromium complexes give (η5:η5-C5H4CH2C5H4)Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2) (VI, n = 1, 2 or 4) and (η5:η5-C5H4CH2C5H4)Rh2(CO)(μ-CF3C2CF3)μ:η1:η1-Ph2P(CH2) (VIII). The complexes (VI) and (VIII) have a mutually cis arrangement of CO and the bisphosphine on the Rh-Rh bond. Attempts to induce the complexes (IV), (V), (VI), and (VIII) to form clusters by loss of CO and Rh-M bond formation were not successful. Treatment with trimethylamine oxide or sunlight irradiation generally resulted in loss of the hetero-metal and formation of the dirhodium phosphine oxide complexes (III, n = 2 or 4) and (VII, n = 2, 3).  相似文献   

4.
The paper describes the synthesis and structural characterization of six new diorganotin(IV) compounds 1–6, [R2SnL] and a monoorganotin(IV) derivative, C4H9SnClL (7). Here L = N′-(5-bromo-2-oxidobenzylidene)-N-(oxidomethylene)hydrazine ligand with ONO tridentate chelation capability and R = CH3 (1), C2H5 (2), n-C4H9 (3), C6H5 (4), C8H17 (5), tert-C4H9 (6), The packing diagram offers a supramolecular structure for 1 and a dimeric structure for 4 with distorted square-pyramidal and distorted trigonal geometry, respectively. The different geometry of 1 than 4 can be attributed to the presence of intermolecular non-covalent Sn---O and Sn---H interactions in the former. The antifungal, antibacterial, antiurease and antileishmanial activities of these complexes proved them to be active biologically and may be formulated as new metal-based drugs in future.  相似文献   

5.
A series of tri-, chlorodi-, and diorganotin(IV) derivatives of 4-(2-methoxyphenyl)piperazine-1-carbodithioate (L) {R?=?n-C4H9 (1), C6H11 (2), CH3 (3) and C6H5 (4)}, (n-C4H9)2SnClL (5) and R2SnL2 {R?=?n-C4H9 (6), C2H5 (7), CH3 (8)} have been synthesized by refluxing organotin(IV) chlorides with the ligand-salt in the appropriate molar ratio. Elemental analysis, Raman, IR, multinuclear NMR (1H, 13C and 119Sn), mass spectroscopic, and single-crystal X-ray crystallographic studies were undertaken to elucidate the structures of the new compounds both in solution and in the solid state. The X-ray diffraction work reveals supramolecular structures for 4 and 6, with distorted trigonal-bipyramidal and distorted octahedral geometries around Sn, respectively. The ligand and several of the new compounds are good antimicrobial agents.  相似文献   

6.
In the title complexes, {[(η-C5H5)Fe(η-C5H4)(CO)](C22H21N4)Ni} (1) and {[(η-C5H5)Fe(η-C5H4)(CO)]2(C22H20N4)Ni} (2), one and two electroactive ferrocenes (Fc) were grafted onto the methine of the nickel complex Nitmtaa (H2tmtaa = 4,11-dihydro-5,7,12,14-tetramethyldibenzo[b,i][1,4,8,11]tetraazacyclotetradecine) through the carbonyl groups. The two new complexes were characterized by IR, UV, MS and NMR spectra as well as by DSC measurements. The crystal structure of 1 was determined. Ni coordinates to four nitrogen atoms of tmtaa, and it is almost in the same plane as the N4 plane. The mean Ni–N bond distance in the N4 plane is 1.866 Å. The non-planar, saddle-shaped conformation of H2tmtaa is almost retained in the nickel complex. The symmetry axis of ferrocene is almost parallel to the N4 plane in Nitmtaa. The dihedral angle between the N4 plane in Nitmtaa and the cyclopentadienyl ring in ferrocene is 98.5°. The electrochemistry of 1 and 2 was studied by cyclic voltammetry in CH2Cl2/1 × 10−1 M n-Bu4NClO4 using a glass carbon working electrode. Because of the electron transfer between the electroactive ferrocene and the completely conjugated system of Nitmtaa, the complexes show novel electrochemical properties and the ferrocenes in 1 and 2 act as electron acceptors.  相似文献   

7.
The aminoalcohols 1-HOCR2-2-NMe2C6H4 [R = Ph (1), R = C6H11 (2)] and 1-HOCPh2CH2-2-NMe2C6H4 (3) react with ZnCl2 in tetrahydrofuran to give the alcohol adducts [ZnCl2(THF){1-HOCR2-2-NMe2C6H4}] [R = Ph (4), R = C6H11 (5)] and [ZnCl2(THF){1-HOCPh2CH2-2-NMe2C6H4}] (6). The complexes 46 were characterized by 1H and 13C NMR spectroscopy, and 5 was also structurally characterized by X-ray crystallography.  相似文献   

8.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

9.
Lithiation of O-functionalized alkyl phenyl sulfides PhSCH2CH2CH2OR (R = Me, 1a; i-Pr, 1b; t-Bu, 1c; CPh3, 1d) with n-BuLi/tmeda in n-pentane resulted in the formation of α- and ortho-lithiated compounds [Li{CH(SPh)CH2CH2OR}(tmeda)] (α-2ad) and [Li{o-C6H4SCH2CH2CH2OR)(tmeda)] (o-2ad), respectively, which has been proved by subsequent reaction with n-Bu3SnCl yielding the requisite stannylated γ-OR-functionalized propyl phenyl sulfides n-Bu3SnCH(SPh)CH2CH2OR (α-3ad) and n-Bu3Sn(o-C6H4SCH2CH2CH2OR) (o-3ad). The α/ortho ratios were found to be dependent on the sterical demand of the substituent R. Stannylated alkyl phenyl sulfides α-3ac were found to react with n-BuLi/tmeda and n-BuLi yielding the pure α-lithiated compounds α-2ac and [Li{CH(SPh)CH2CH2OR}] (α-4ab), respectively, as white to yellowish powders. Single-crystal X-ray diffraction analysis of [Li{CH(SPh)CH2CH2Ot-Bu}(tmeda)] (α-2c) exhibited a distorted tetrahedral coordination of lithium having a chelating tmeda ligand and a C,O coordinated organyl ligand. Thus, α-2c is a typical organolithium inner complex.Lithiation of O-functionalized alkyl phenyl sulfones PhSO2CH2CH2CH2OR (R = Me, 5a; i-Pr, 5b; CPh3, 5c) with n-BuLi resulted in the exclusive formation of the α-lithiated products Li[CH(SO2Ph)CH2CH2OR] (6ac) that were found to react with n-Bu3SnCl yielding the requisite α-stannylated compounds n-Bu3SnCH(SO2Ph)CH2CH2OR (7ac). The identities of all lithium and tin compounds have been unambiguously proved by NMR spectroscopy (1H, 13C, 119Sn).  相似文献   

10.
The complex [Rh(CO)2Cl]2 reacts with two molar equivalent of pyridine carboxylic acids ligands Py-2-COOH(a), Py-3-COOH(b) and Py-4-COOH(c) to yield rhodium(I) dicarbonyl chelate complex [Rh(CO)2(L/)](1a) {L/ = η2-(N,O) coordinated Py-2-COO(a/)} and non-chelate complexes [Rh(CO)2ClL//](1b,c) {L// = η1-(N) coordinated Py-3-COOH(b), Py-4-COOH(c)}. The complexes 1 undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to give penta coordinated Rh(III) complexes of the types [Rh(CO)(CORn)XL/], {n = 1,2,3; R1 = CH3(2a); R2 = C2H5(3a); X = I and R3 = CH2C6H5 (4a); X = Cl}, [Rh(CO)I2L/](5a), [Rh(CO)(CORn)ClXL//] {R1 = CH3(6b,c); R2 = C2H5(7b,c); X = I and R3 = CH2C6H5 (8b,c); X = Cl} and [Rh(CO)ClI2L//](9b,c). The complexes have been characterized by elemental analysis, IR and 1H NMR spectroscopy. Kinetic data for the reaction of 1a–b with CH3I indicate a first order reaction. The catalytic activity of 1a–c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 810–1094) is obtained compared with that of the well-known commercial species [Rh(CO)2I2] (TON = 653) at mild reaction conditions (temperature 130 ± 5 °C, pressure 35 ± 5 bar).  相似文献   

11.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

12.
Half-titanocene is well-known as an excellent catalyst for the preparation of SPS (syndiotactic polystyrene) when activated with methylaluminoxane (MAO). Dinuclear half-sandwich complexes of titanium bearing a xylene bridge, (TiCl2L)2{(μ-η5, η5-C5H4-ortho-(CH2–C6H4–CH2)C5H4}, (4 (L = Cl), 7 (L = O-2,6-iPr2C6H3)) and (TiCl2L)2{(μ-η5, η5-C5H4-meta-(CH2–C6H4–CH2)C5H4} (5 (L = Cl), 8(L = O-2,6-iPr2C6H3)), have been successfully synthesized and introduced for styrene polymerization. The catalysts were characterized by 1H- and 13C NMR, and elemental analysis. These catalysts were found to be effective in forming SPS in combination with MAO. The activities of the catalysts with rigid ortho- and meta-xylene bridges were higher than those of catalysts with flexible pentamethylene bridges. The catalytic activity of four dinuclear half-titanocenes increased in the order of 4 < 5 < 7 < 8. This result displays that the meta-xylene bridged catalyst is more active than the ortho-xylene bridged and that the aryloxo group at the titanium center is more effective at promoting catalyst activity compared to the chloride group at the titanium center. Temperature and ratio of [Al]:[Ti] had significant effects on catalytic activity. Polymerizations were conducted at three different temperatures (25, 40, and 70 °C) with variation in the [Al]:[Ti] ratio from 2000 to 4000. It was observed that activity of the catalysts increased with increasing temperature, as well as higher [Al]:[Ti]. Different xylene linkage patterns (ortho and meta) were recognized to be a principal factor leading to the characteristics of the dinuclear catalyst due to its different spatial arrangement, causing dissimilar intramolecular interactions between the two active sites.  相似文献   

13.
The molecular structure and spectroscopic properties of a series of phenylplatinum complexes containing silsesquioxanate and phosphine ligands with general formula trans-[Pt{O10Si7(R)7(OH)2}(Ph)(L)2] (1: R = cyclo-C5H9, L = PEt3; 2: R = iso-C4H9, L = PEt3; 3: R = CH3, L = PEt3; 4: R = cyclo-C5H9, L = PMe3; 5: R = cyclo-C5H9, L = PMe2Ph; 6: R = cyclo-C5H9, L = PPh2Me; 7: R = cyclo-C5H9, L = PPh3) have been investigated by DFT/OPW91/6-31G(d) calculations, 1H, 13C, 29Si and 31P NMR and IR spectroscopy. DFT molecular modeling based on available X-ray and NMR data for complexes 1 and 2 allowed deriving structure-NMR spectra correlations. It was found that the alkyl substituents (R) attached to Si atoms, cyclo-C5H9, iso-C4H9 and CH3, slightly influence the geometry and multinuclear NMR parameters of the complexes in the series studied. The molecular structures of the Pt(II) complexes with R = cyclo-C5H9 (47) were predicted by DFT calculations of their simplified models with R = CH3 (4?7′). The geometry optimizations of 4?7′ showed square-planar configuration of Pt(II) center bonded to two trans phosphine ligands, a phenyl group and an O-monocoordinated silsesquioxanate. The structures 4?6′ are stabilized by two intramolecular hydrogen bonds similar to 1 and 2. A fast conformer exchange process A?B and switching of H-bonds in solution of 16 were suggested based on (i) the calculated conformer energies and small barrier of the process, and (ii) the observed single 1H NMR signal at low magnetic field. The stability of the Pt(II) complexes depends on the nature of the phosphine ligands and decreases in the order PMe2Ph > PMe3 > PPh2Me > PEt3 > PPh3. The PPh3 ligands attached to Pt(II) in 7 cause the largest geometry changes and a new set of weaker hydrogen bonds. The comparison of the calculated NMR and IR parameters with the experimental spectroscopic data reveals good coincidence and thus confirmed the suggested molecular structures.  相似文献   

14.
The reaction of dimeric rhodium precursor [Rh(CO)2Cl]2 with two molar equivalent of 1,1,1-tris(diphenylphosphinomethyl)ethane trichalcogenide ligands, [CH3C(CH2P(X)Ph2)3](L), where X = O(a), S(b) and Se(c) affords the complexes of the type [Rh(CO)2Cl(L)] (1a–1c). The complexes 1a–1c have been characterized by elemental analyses, mass spectrometry, IR and NMR (1H, 31P and 13C) spectroscopy and the ligands a–c are structurally determined by single crystal X-ray diffraction. 1a–1c undergo oxidative addition (OA) reactions with different electrophiles such as CH3I, C2H5I and C6H5CH2Cl to give Rh(III) complexes of the types [Rh(CO)(COR)ClXL] {R = –CH3 (2a–2c), –C2H5 (3a–3c); X = I and R = –CH2C6H5 (4a–4c); X = Cl}. Kinetic data for the reaction of a–c with CH3I indicate a first-order reaction. The catalytic activity of 1a–1c for the carbonylation of methanol to acetic acid and its ester is evaluated and a higher turn over number (TON = 1564–1723) is obtained compared to that of the well-known commercial species [Rh(CO)2I2] (TON = 1000) under the reaction conditions: temperature 130 ± 2 °C, pressure 30 ± 2 bar and time 1 h.  相似文献   

15.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

16.
Titanocene–bis(trimethylsilyl)ethyne complexes [Ti(η5-C5Me4R)22-Me3SiCCSiMe3)], where R=benzyl (Bz, 1a), phenyl (Ph, 1b) and p-fluorophenyl (FPh, 1c), thermolyse at 150–160°C to give products of double C---H activation [Ti(η5-C5Me4Bz){η34-C5Me3(CH2)(CHPh)}] (2a), [Ti(η5-C5Me4Bz){η34-C5Me2Bz(CH2)2}] (2a′), [Ti(η5-C5Me4Ph){η34-C5Me2Ph(CH2)2}] (2b), and [Ti(η5-C5Me4FPh){η34-C5Me2FPh(CH2)2}] (2c). In the presence of 2,2,7,7-tetramethylocta-3,5-diyne (TMOD) the thermolysis affords analogous doubly tucked-in compounds bearing one η34-allyldiene and one η5-C5Me4R ligand having TMOD attached by its C-3 and C-6 carbon atoms to the vicinal methylene groups adjacent to the substituent R (R=Bz (3a), Ph (3b), and FPh (3c)). Compound 3a is smoothly converted into air-stable titanocene dichloride [TiCl25-C5Me2Bz(CH2CH(t-Bu)CH=CHCH(t-Bu)CH2)}(η5-C5Me4Bz)] (4a) by a reaction with hydrogen chloride. Yields in both series of doubly tucked-in complexes decrease in the order of substituents: BzPh>FPh. Crystal structures of 1c, 2a, 2b, and 3b have been determined.  相似文献   

17.
New boron substituted cobalta bis(dicarbollide)(1-) ion (1) derivatives of formula [(8,8′-(RPhP(O)(CH2)nC(O)N) < (1,2-C2B9H10)2-3,3′-Co] (R = Ph or C8H17, n = 1, 3a, 3b; R = Ph, n = 2, 3c), [(8-(Ph2P(O)CH2C(O)NR)(1,2-C2B9H10))(1′,2′-C2B9H11)-3,3′-Co] (R = H, C2H5, CH2C6H5, 5a-c) and [(8-(2RPhP(O)CH2C(O)N(1R)CH2-1,2-C2B9H10))(8′-CH3O-1′,2′-C2B9H10)-3,3′-Co] (1R = Benzyl, 2R = Ph or C8H17, 7a,b) were prepared with the aim to develop a new class of efficient extraction agents for partitioning of polyvalent f-block elements, i.e. lanthanides and actinides from high-level activity nuclear waste. The anionic ligands were characterized by multinuclear NMR spectroscopy and MS, the structures of Cs3a and the calcium complex of 7a were determined by X-ray diffraction analysis. The crystallographic study of the Cs3a proved a formation of linear chains in the structure, where the metal cation is coordinated by oxygen atoms of the CMPO terminal groups. The X-ray structure of the Ca2+ complex of the ionic ligand 7a proved a 1:3 metal to ligand ratio. Presented also is the X-ray structure of the starting ammonium compound 6 used in the synthesis of 7a and 7b. With exception of 5c, these anionic ligands are of high extraction efficiency, the highest being found for 7a in low polar solvent mixture hexyl methyl ketone-dodecane 1:1. These properties qualify some of these derivatives for possible technological applications.  相似文献   

18.
Treatment of [(1,5-C8H12)PtCl(X)] (X=Cl, CH3, CH2CMe3) with C2 chiral cyclopentane-1,2-diyl-bis(phosphanes) C5H8(PR2)2, either as racemic mixtures or as resolved enantiomers, afforded the chelate complexes [C5H8(PR2)2Pt(Cl)(X)] (X=Cl: R=Ph (1), N-pip (2), OPh (3); X=CH3: R=Ph (4), N-pip (5), OPh (6); X=CH2CMe3: R=Ph (7), N-pip (8), OPh (9); ‘N-pip’=N(CH2)5), (+)-[(1R,2R)-C5H8{P(OPh)2}2PtCl2] [(R,R)-3], (−)-[(1S,2S)-C5H8{P(OPh)2}2PtCl2] [(S,S)-3], (−)-[(1R,2R)-C5H8(PPh2)2Pt(Cl)(X)], and (+)-[(1S,2S)-C5H8(PPh2)2Pt(Cl)(X)] (X=CH3: (R,R)-4, (S,S)-4; X=CH2CMe3: (R,R)-7, (S,S)-7). Reacting 4, 6, and 7 with AgO3SCF3 led to triflate derivatives [C5H8(PR2)2Pt(X)(OSO2CF3)] [X=CH3: R=Ph (11), OPh (12); X=CH2CMe3: R=Ph (13)] with covalently bonded OSO2CF3 ligands. The unusual Pt2 complex [μ-Cl{C5H8(PPh2)2PtCH3}2]O3SCF3 (14) containing an unsupported single Pt---Cl---Pt bridge was also isolated. In the presence of SnCl2, complexes 1, 3, 4, 6, 7, and 9 are catalysts for the hydroformylation of styrene forming 2- and 3-phenylpropanal together with ethylbenzene. Except for 1, they also catalyze the consecutive hydrogenation of the primary propanals to alcohols. High regioselectivities towards 2-phenylpropanal (branched-to-normal ratios ≥91:9) were obtained in hydroformylations catalyzed by 3 and 4, for which the influence of varied CO/H2 partial pressures, catalyst-to-substrate ratios and different reaction temperatures and times on the outcome of the catalytic reaction was also studied. When tin-modified complexes (R,R)-3, (S,S)-3, and (S,S)-4 were used as optically active Pt(II) catalysts, an only low stereoselectivity for asymmetric hydroformylation (e.e.<18%) was observed. The Pt---Sn complexes [C5H8(PR2)2Pt(CH3)(SnCl3)] [R=Ph (15), OPh (17)], resulting from SnCl2 insertion into the Pt---Cl bonds of 4 or 6, undergo rapid degradation in solution, forming mixtures composed of [C5H8(PR2)2Pt(X)(Y)] with R=Ph or OPh and X/Y=Cl/SnCl3 (16, 18), Cl/Cl (1, 3), and SnCl3/SnCl3 (19, 20), respectively. In the presence of SnCl2, triflate complex 11 also becomes a catalyst for styrene hydroformylation and consecutive hydrogenation of the aldehydes to alcohols. The crystal structures of 11 complexes — 2, 5, 7, 8, 9, 10 (the previously prepared [C5H8{P(N-pip)2}2Pt(CH2CMe3)2]), 13, 14, 16, (R,R)-3, and (S,S)-3 — were determined by X-ray diffraction.  相似文献   

19.
The behaviour under electron impact (70 eV) which includes some rearrangement processes of some tetraorganodiphosphanedisulfides R2P(S)-P(S)R2 (R ? CH3, C2H5, n-C3H7, n-C4H9, C3H5, C6H5) and CH3RP(S)–P(S)CH3R (R ? C2H5, n-C3H7, n-C4H9, C6H5, C6H5, C6H5,CH2) is reported and discussed. Fragmentation patterns which are consistent with direct analysis of daughter ions and defocusing metastable spectra are given. The atomic composition of many of the fragment ions was determined by precise mass measurements. In contrast to compounds R3P(S) loss of sulphur is not a common process here. The first step in the fragmentation of these compounds is cleavage of one P–C bond and loss of a substituent R?. The second step is elimination of RPS leading to [R2PS]+ from which the base peaks in nearly all the spectra arise. The phenyl substituted compounds give spectra with very abundant [(C6H5)3P]+. and [(C6H5)2CH3P]+. ions respectively, resulting from [M]+. by migration of C6H5. Rearrangement of [M]+. to a 4-membered P-S ring system prior to fragmentation is suggested.  相似文献   

20.
Compounds (Bu4N)[2-B10H9{NH=C(NHR)CH3}] are obtained by reactions of the tetrabutylammonium salt of the [2-B10H9(N≡CCH3)] anion with aliphatic and aromatic primary amines RNH2 (R = n-C3H7, n-C4H9, cyclo-C5H9, C6H5, cyclo-C6H11, n-C6H13, C7H7, C8H8NH2, C6H4NO2, and C18H37) and identified by IR, ESI/MS, and NMR (1H, 11B, and 13C) spectroscopy. The structures of the amidine-type derivatives [2-B10H9{Z-NH=C(NH-cyclo-C5H9)CH3}] and [2-B10H9{Z-NH=C(NH-C7H7)CH3}] are determined by X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号