首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inductive, resonance, and polarization effects of substituents on the ionization potential of iodine n orbitals in IX, ISnR3, and ICCX molecules, and also on the energy of the charge-transfer band in the UV spectra of the complexes of IX and ISnR3 with tetracyanoethylene and iodine were studied. The radical cations generated by photoionization of individual molecules in the gas phase and occurring as components of contact radical ion pairs (excited state of charge-transfer complexes) in solution have similar electronic structure. The resonance parameters + R of organosilicon, organogermanium, and organotin substituents bound to the radical cation centers I+ · and I+ ·CC were calculated for the first time.  相似文献   

2.
The first vertical ionization potentialsI(ns) of 69 monosulfides XSY (X, Y=H, Hal, organic, or heteroorganic substituent) are related to the inductive σI resonance (σ R + ) and polarizability (σα) constants of the substituents by dependences of theI(nS)=a+bΣσI+bΣσR+bΣσα type. TheI(ns) values are also affected by hyperconjugation which increases on going from XSH to XSY (Y≠H) compounds. The first calculations of the σ R + parameters characterizing the conjugation of Si-, Ge-, Sn-, and Pb-containing substituents with the S.+ radical cation center are reported. The reasons for weakening of resonance donor properties of heteroorganic substituents of the +M-type in the systems studied as compared to those of the same substituents in the corresponding aromatic radical cations are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khmicheskaya, No. 1, pp. 25–31, January, 2000.  相似文献   

3.
The first vertical ionization potentialsI(ns) of 69 monosulfides XSY (X, Y=H, Hal, organic, or heteroorganic substituent) are related to the inductive σI resonance (σ R + ) and polarizability (σα) constants of the substituents by dependences of theI(nS)=a+bΣσI+bΣσR+bΣσα type. TheI(ns) values are also affected by hyperconjugation which increases on going from XSH to XSY (Y≠H) compounds. The first calculations of the σ R + parameters characterizing the conjugation of Si-, Ge-, Sn-, and Pb-containing substituents with the S.+ radical cation center are reported. The reasons for weakening of resonance donor properties of heteroorganic substituents of the +M-type in the systems studied as compared to those of the same substituents in the corresponding aromatic radical cations are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khmicheskaya, No. 1, pp. 25–31, January, 2000.  相似文献   

4.
The first vertical ionization potentials (I) of phosphorus compounds P(Xi)3, OP(Xi)3, SP(Xi)3, (4-XC6H4)3P, and PCX are related to the inductive, resonance, and polarizability parameters of inorganic, organic, and organometallic substituents X by dependences of the type I = I H + aI + bR + + c, where I H is the I value for X = H. The I values are also affected by hyperconjugation. The ratio of the contributions of the resonance (bR +) and polarizability (c) effects to the I value is determined by the degree of delocalization of the unpaired electron and the positive charge in the radical cations formed upon ionization of neutral molecules. The R + resonance parameters of organosilicon, organogermanium, and organotin substituents bound to the P ·+ radical cation center were calculated for the first time.  相似文献   

5.
The crystal structures of complex antimony(III) fluorides RbSbF4 (I) and (C2N4H5)SbF4 (II) were determined. The crystals of I and II are monoclinic; for I: a = 4.628(1) Å, b = 6.167(1) Å, c = 7.922(1) Å, = 100.582(3)°, V = 222.24(7) Å3, Z = 2, (calcd.) = 4.23 g/cm3, (exp.) = 4.25 g/cm3, F(000) = 248, space group P21/m, R = 0.0395; for II: a = 4.678(1) Å, b = 7.339(4) Å, c = 10.185(1) Å, = 90.88(2)°, V = 349.6(2) Å3, Z = 2, (calcd.) = 2.69 g/cm3, (exp.) = 2.70 g/cm3, F(000) = 264, space group P21. The structure of I is formed by Rb+ cations and [SbF4] n n anionic chains composed of SbF5E octahedra with two bridging fluorine atoms. The structure of IIis formed by (C2N4H5)+ cations and isolated [SbF4] anions in which the antimony polyhedra are SbF4E trigonal bipyramids. The relationship between the crystal structures and electrophysical and biological properties of single-charged cation tetrafluoroantimonates(III) was studied.  相似文献   

6.
Interaction of ortho-phenylenediamine with the nonanuclear nickel trimethylacetate cluster Ni9(4-OH)3(3-OH)3( n -OOCMe3)12(HOOCCMe3)4(I) in an amine deficiency yields the antiferromagnetic trinuclear complex [Ni3{-N,N"-(NH2)2C6H4}2(HCCOOCMe3)3(3-OH)(-OOCCMe3)4]+(OOCCMe3)(III) containing bridging diamine ligands. Reaction of excess diamine with Ior IIIleads to the formation of the paramagnetic monomer Ni{2-o-(NH2)2C6H4}2(OOCCMe3)2(IV), which reacts with atmospheric oxygen to form the known bis(semiquinonediimine) complex Ni[1,2-(NH)2C6H4]2(V).  相似文献   

7.
The first vertical ionization potentials (I) of halides HalX (Hal = Cl, Br, I; X is an inorganic or organic substituent) are linearly related to the inductive (I), resonance (R +), and polarizability () constants of the substituents X (I = a + bI + cR + + d). As the atomic number of the Hal element in the Hal·+X radical cations increases, the inductive interaction is strengthened while the polarizability interaction is weakened. Conjugation remains virtually independent of the Hal atom. The resonance R +-constants of the MX3 (M = Si, Ge, Sn, Pb) substituents bound to the Hal·+ radical cation centers were first calculated.  相似文献   

8.
Crystals of bis[(2.2.2-cryptand)sodium] bis[aqua(isothiocyanato)(-isothiocyanato)sodium]: 2[Na(C18H36N2O6)]+ · [Na2(NCS)2(-NCS)2(H2O)2]2– (I) were synthesized and studied by X-ray diffraction analysis. The disordered structure of I (a = 12.715 Å, b = 10.458 Å, c = 21.767 Å, = 102.56°, space group P21/n) was solved by the direct method and refined by the full-matrix least-squares method in anisotropic approximation to R = 0.058 from 3896 independent reflections (CAD4 automated diffractometer, MoK ). The crystal consists of two complex ions [I1]+ and [I2]2– (molar ratio 2 : 1). The Na+ cation of the host–guest cation I1 is coordinated by all eight heteroatoms (6O + 2N) of the cryptand ligand. The coordination polyhedron of this Na+ cation is a distorted cube. The atoms of two groups (CH2–CH2 and CH2–O–CH2–CH2) in the cryptand ligand are disordered over two positions. The independent cation Na+ of the centrosymmetric binuclear complex anion I2 is coordinated by one bifurcated O atom of the disordered water molecule and by three N atoms of the SCN ligands (including two bridging ligands). The coordination polyhedron of this Na+ caiotn is a distorted tetrahedron. The complex ions in the crystal structure of I are united by hydrogen bonds.  相似文献   

9.
The first vertical electron affinities EA of 13 series of molecules and free radicals D(X i ) n are related to the inductive (σ I ), resonance (σ R ? ), and polarization (σα) parameters of substituents X i by the dependences EA = EA H + aΣσ I + bΣσ R/? + cΣσα: In radical anions D(X i ) n , compared to radical cations D(X i ) n , the polarization interaction is weaker or similar in magnitude but has an opposite sign. The previously unknown resonance parameters σ R ? of substituents SiMe3 and CH2SiMe3 bound to the radical anion center H2C=CH were calculated.  相似文献   

10.
Summary The copper(III)-imine-oxime complexes [CuIII(Enio)]+ and [CuIII(Pre)]+ {EnioH2 =N,N-ethylene bis(isonitrosoacetylacetoneimine) and PreH2 = N,N-propylene bis (isonitrosoacetylacetoneimine)} react very rapidly with iodide. The rate law under fixed conditions for the reaction is given by the equation: –d[CuIII]/dt = (2k2[I] + 2k3[I]2)[CuIII] The [CuIII(Enio)]+ reaction was pH-independent whereas the [Cu (Pre)]+ reaction rate increased with increasing pH. Both the k2 and the k3 pathways are believed to involve one-electron transfer. An inner-sphere mechanism may operate in the pathway, first-order in [I].  相似文献   

11.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

12.
The crystal structure of thallium fluoroantimonate(III) complex TlSb4F13 (I), which is isostructural to KSb4F13 (II), is determined. Crystals I are tetragonal: a = 9.634(2) Å, c = 6.590(2) Å, V = 611.7(2) Å3, Z = 2, (calcd) = 5.094 g/cm3, F(000) = 804.0, space group I4¯. The structure consists of tetrameric [Sb4F13] anions formed by SbF3 groups connected by the fluoride ion and the l+ cations.  相似文献   

13.
Crystals of anionic complexes of the composition M[CuCl2(HOCH2CCCH2OH)], where M = NH4 + (I), K+ (II), were isolated from concentrated aqueous solutions of CuCl and MCl (M = NH4 +, K+) in the presence of 2-butyne-1,4-diol. Their structures were studied by X-ray diffraction analysis. Isostructural crystals I and II are orthorhombic; Z = 8, space group Ibam; a = 6.735(1) and 6.666(2) Å, b = 17.206(3) and 16.874(6) Å, c = 15.172(3) and 15.032(4) Å, V = 1758(1) and 1691(1) Å3, respectively. The compounds are built of individual [CuCl2(HOCH2CCCH2OH)] anions; the NH4 + (I) or K+ (II) cations are arranged in the voids between the anions. The -coordinated Cu(I) atoms have trigonal-planar environment of two chlorine atoms and CC bond of the 2-butyne-1,4-diol molecule. The Cu–(CC) distances in the -core are 1.892(4) and 1.887(6) Å, CC are 1.233(5) and 1.228(5) Å in I and II, respectively. In complex I, additional hydrogen bonds Cl···H–NH3 (Cl···H 2.43(4) Å) and O···H–NH3 (O···H 1.97(3) Å) stabilize the structure.  相似文献   

14.
Crystals of the -complex [C4H8N2(C3H5)4]2+[CuCl2] 2 (I) were prepared by ac electrochemical synthesis from copper and N,N,N,N-tetraallylpiperasinium chlorides in alcohol solution. Similar synthesis with the use of the metal and N,N,N,N-tetraallylpiperasinium bromides yielded the complex [C4H8N2(C3H5)4]2+[CuBr3]2– (II). Structures I and II were studied by X-ray diffraction (DARCh automated single-crystal diffractometer, MoK radiation). Crystals of I are triclinic, space group P1¯, a = 8.650(3) Å, b = 7.572(2) Å, c = 8.095(3) Å, = 100.45(2)°, = 83.91(2)°, = 99.89(2)°, V = 512.1(6) Å3, Z = 1. Crystals of II are orthorhombic, space group Pn21 a, a = 17.673(3) Å, b = 14.369(6) Å, c = 8.244(2) Å, V = 2093(2) Å3, Z = 4. In structure I, the potentially tetradentate N,N,N,N-tetraallylpiperasinium cation uses two centrosymmetric allyl groups for bonding with copper atoms, whose environment is completed to the trigonal-planar coordination with the chlorine atoms. The [C4H8N2(C3H5)4]2+[CuCl2] 2 groups are joined into a three-dimensional framework by weak hydrogen bonds. The inorganic fragment CuCl 2 is partially disordered, which appears as splitting of the positions of the copper atom and one of the chlorine atom. In compound II, the inorganic fragment occurs as an unusual trigonal-planar CuBr2– 3 anion; the N,N,N,N-tetraallylpiperasinium cation is not involved in metal coordination.  相似文献   

15.
Peroxovanadium(V) complexes of -hydroxyhippuric acid (-H2hhip), M 2[V2O2(O2)2(-hhip)2nH2O, [M=K+ (1), NH4 + (2), NEt 4 + (3), NBu 4 + (4); n=5.5, 3, 8, 5) have been prepared and characterized by elemental analysis, i.r., u.v.–vis. and 51V-n.m.r. spectroscopies and by thermal analysis. The X-ray structure determination of (4) revealed the presence of dinuclear [V2O2(O2)2(R--hhip)(S--hhip)]2– anions with a planar V2O2 bridging core and seven-coordinated central atoms. The coordination geometry of the vanadium atom is a distorted pentagonal bipyramid.  相似文献   

16.
A series of binuclear CuII complexes [Cu2XL] n+ having two copper(II) ions bridged by different motifs (X = OH, MeCO2 , or Cl) have been prepared using the ligands: H2L1 = 4-methyl-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L2 = 4-nitro-2-[N-(2-{dimethylamino}ethyl-N-methyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol, H2L3 = 4-methyl-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol and H2L4 = 4-nitro-2-[N-(2-{diethylamino}ethyl-N-ethyl)aminomethyl]-6-[(prolin-1-yl)methyl]phenol. The complexes have been characterized by spectroscopic, analytical, magnetic and electrochemical measurements. Cryomagnetic investigations (80–300 K) revealed anti-ferromagnetic exchange between the CuII ions (–2J in the range –50 to –182 cm–1). The strength of anti-ferromagnetic coupling lies in the order: OAc > OH > Cl. Cyclic voltammetry revealed the presence of two redox couples, assigned to CuII/CuII/CuII/CuI/CuI/CuI. The first reduction potential is sensitive to electronic effects from the aromatic ring substituents and steric effect on the donor nitrogens (side arm) of the ligand systems.  相似文献   

17.
Crystals of [Cu(DAF)(H2O)]BF4(I) and [Cu(DAF)(ClO4)] (II) (DAF is diallyl formamide) were synthesized by an alternate-current electrochemical method, and their structures were determined (MoK radiation, 1247 and 859 independent reflections with I 2(I), R= 0.043 and 0.032 for Iand II, respectively). The complexes crystallize in space group P21/n, Z= 4. For I, a= 10.782(3) Å, b= 12.096(5) Å, c= 9.185(3) Å, = 103.62(3)°, and V= 1164.2(7) Å3; for II, a= 10.064(3) Å, b= 10.753(6) Å, c= 10.002(3) Å, = 87.52(4)°, and V= 1081.4(8) Å3. The copper atom in structures Iand IIcoordinates both C=C bonds in one DAF molecule and oxygen atom of the amide group of another DAF molecule, as well as an oxygen atom of H2O (in I) or ClO4(in II) in the axial position. The uncommon behavior of the anions in structures Iand IIis explained by their different values of Pierson hardness.  相似文献   

18.
A new complex, (2.2.2-cryptand)potassium N-benzoyldiisopropylphosphoramidate monohydrate [K(Crypt-222)]+ · (iso-PrO)2P(O)NC(O)Ph · H2O (I), was synthesized. Its crystal structure was studied by X-ray diffraction analysis: space group P , a = 11.804 ?, b = 12.043 ?, c = 15.607 ?, α = 87.29°, β = 84.59°, γ = 61.32°, Z = 2. The triclinic structure of I was solved by direct methods and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.052 for all 5410 independent reflections (CAD-4 automated diffractometer, λMoK α). In structure I, the host-guest [K(Crypt-222)]+ complex cation has approximate D 3 symmetry. Its K+ cation is coordinated by all the eight (6O + 6N) heteroatoms of the cryptand ligand. The coordination polyhedron of K+ (CN = 8) is a dicapped trigonal prism slightly distorted toward an antiprism. In the phosphoramidate anion (with the deprotonated nitrogen atom), eight non-hydrogen atoms of two terminal iso-PrO substituents are disordered each over two positions: main and low-occupancy positions. The water molecule in complex I is disordered, and its H atoms form hydrogen bonds. Original Russian Text ? A.N. Chekhlov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 2, pp. 331–337.  相似文献   

19.
The paper describes synthesis of (nBu4N)2[RuNOCl5](I), (nBu4N)2[RuNOCl4OH](II), (nBu4N)2×[RuNOCl4OH]·6H2O (III), and (nBu4N)2[RuNOCl5]· 2(nBu4N)2[RuNOCl4(H2O)]·2H2O (IV). The complexes were studied by IR spectroscopy and powder Xray and crystal Xray analyses. The structures are built up of [RuNOCl5]2- (I, IV), [RuNOCl4OH]2- (II, III), and [RuNOCl4(H2O)]- (IV) complex anions, (nBu4N)+ cations, and crystal water molecules (III, IV). The substances are moderately soluble in water; highly soluble in polar organic solvents, such as acetone, ethanol, chloroform, methylene chloride; and almost insoluble in carbon tetrachloride and toluene. Under storage in light, the compounds decompose from the surface; in darkness I and II are stable, whereas III and IV can lose part of the crystal water.  相似文献   

20.
Measurements of nitrogen atom density, by means of NO chemical titration, along with an evaluation of the densities of some excited species N 2 (B, v=11), N 2 (B, v=2), N 2 (C, v=0), and N 2 + (B,v=0), by means of a spectroscopic study of some bands of dinitrogen, are achieved along the flowing afterglow of a dinitrogen microwave plasma (2450 MHz) for several pressures. The concentrations obtained are in the following range: [N]10 +15 , [N 2 (B, 2)]10 +9 –10 +10 , [N 2 (B, 11)]10 +8 –10 +9 , [N 2 (C, 0)]10 +6 –10 +7 , [N 2 + (B,0)]10 +6 -10 +8 (cm-3). From a kinetic study of the formation and decay of excited and charged species, an estimation of N 2 (A, v), N 2 (X, v, and N 2 + (X) densities can be derived: [N 2 (A, v)]10 +12 , [N 2 (X, v6)]10 +15 –10 +16 , [N 2 (X, v12)]10 +14 –10 +15 , [N 2 + (X)]10 +10 (cm -3 ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号