首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current study examines whether the engagement of mathematics teachers in modelling activities and subsequent changes in their conceptions about these activities affect their beliefs about mathematics. The sample comprised 52 mathematics teachers working in small groups in four modelling activities. The data were collected from teachers' Reports about features of each activity, interviews and questionnaires on teachers' beliefs about mathematics. The findings indicated changes in teachers' conceptions about the modelling activities. Most teachers referred to the first activity as a mathematical problem but emphasized only the mathematical notions or the mathematical operations in the modelling process; changes in their conceptions were gradual. Most of the teachers referred to the fourth activity as a mathematical problem and emphasized features of the whole modelling process. The results of the interviews indicated that changes in the teachers' conceptions can be attributed to structure of the activities, group discussions, solution paths and elicited models. These changes about modelling activities were reflected in teachers' beliefs about mathematics. The quantitative findings indicated that the teachers developed more constructive beliefs about mathematics after engagement in the modelling activities and that the difference was significant, however there was no significant difference regarding changes in their traditional beliefs.  相似文献   

2.
Prof Hugh Burkhardt 《ZDM》2006,38(2):178-195
This paper describes the development of mathematical modelling as an element in school mathematics curricula and assessments. After an account of what has been achieved over the last forty years, illustrated by the experiences of two mathematician-modellers who were involved, I discuss the implications for the future—for what remains to be done to enable modelling to make its essential contribution to the «functional mathematics», the mathematical literacy, of future citizens and professionals. What changes in curriculum are likely to be needed? What do we know about achieving these changes, and what more do we need to know? What resources will be needed? How far have they already been developed? How can mathematics teachers be enabled to handle this challenge which, scandalously, is new to most of them? These are the overall questions addressed. The lessons from past experience on the challenges of large-scale of implementation of profound changes, such as teaching modelling in school mathematics, are discussed. Though there are major obstacles still to overcome, the situation is encouraging.  相似文献   

3.
John Berry 《ZDM》2002,34(5):212-220
Mathematical modelling as one component of problem solving is an important part of the mathematics curriculum and problem solving skills are often the most quoted generic skills that should be developed as an outcome of a programme of mathematics in school, college and university. Often there is a tension between mathematics seen at all levels as ‘a body of knowledge’ to be delivered at all costs and mathematics seen as a set of critical thinking and questioning skills. In this era of powerful software on hand-held and computer technologies there is an opportunity to review the procedures and rules that form the ‘body of knowledge’ that have been the central focus of the mathematics curriculum for over one hundred years. With technology we can spend less time on the traditional skills and create time for problem solving skills. We propose that mathematics software in general and CAS in particular provides opportunities for students to focus on the formulation and interpretation phases of the mathematical modelling process. Exploring the effect of parameters in a mathematical model is an important skill in mathematics and students often have difficulties in identifying the different role of variables and parameters This is an important part of validating a mathematical model formulated to describe, a real world situation. We illustrate how learning these skills can be enhanced by presenting and analysing the solution of two optimisation problems.  相似文献   

4.
5.
Socio-cultural theories in mathematics education field recently emphasize the importance of the collective argumentation within small-group work. Since mathematical modelling tasks require a process in which students search for a solution for real life problems through small-group work, the arguments in this process become an issue of concern. This study examines the arguments constructed within the mathematical modelling cycle by considering the participants’ modelling processes. In this context, four primary pre-service mathematics teachers worked on a modelling task and their arguments were explained through the components of Toulmin’s argumentation schema. Findings revealed that the data and the claims of most of the arguments corresponded to the starting and ending points of the modelling transition in which the current arguments constructed. The existence of the arguments corresponded through warrant-claim originated from inquiring the assumptions in the modelling cycle. In addition, the participants made assumptions as warrants to support their arguments and as rebuttals to show the degree of certainty of claims in intra-group challenging situations. Both the warrants and the backings depended on modelling context as well as mathematics context.  相似文献   

6.
This article deals with the role that so-called emergent models can play in the process of constituting formal mathematics. The underlying philosophy is that formal mathematics is something that is, or should be, constituted by the students themselves. In the instructional design theory for realistic mathematics education, models always have been employed to foster a process in which formal mathematics is reinvented by the students themselves. This article describes how the use of models became more and more explicated over time and developed into the notion of emergent models. The design of an instructional sequence, which deals with flexible mental computation strategies for addition and subtraction up to 100, is taken as an instance for elaborating what is meant by emergent models and what role they play in fostering the constitution of formal mathematics. The analysis shows that there are 3 interrelated processes. First. at a more holistic level, there is a global transition in which "the model" initially emerges as a model of informal mathematical activity and then gradually develops into a model for more formal mathematical reasoning. Second, the transition from "model of" to "model for" involves the constitution of anew mathematical reality that can be denoted formal in relation to the original starting points of the students. Third, in the series of instructional activities, there is not 1 model, but the model actually is shaped as a series of signs, in which each new sign comes to signify activity with a previous sign in a chain of signification.  相似文献   

7.
How Emergent Models May Foster the Constitution of Formal Mathematics   总被引:6,自引:0,他引:6  
This article deals with the role that so-called emergent models can play in the process of constituting formal mathematics. The underlying philosophy is that formal mathematics is something that is, or should be, constituted by the students themselves. In the instructional design theory for realistic mathematics education, models always have been employed to foster a process in which formal mathematics is reinvented by the students themselves. This article describes how the use of models became more and more explicated over time and developed into the notion of emergent models. The design of an instructional sequence, which deals with flexible mental computation strategies for addition and subtraction up to 100, is taken as an instance for elaborating what is meant by emergent models and what role they play in fostering the constitution of formal mathematics. The analysis shows that there are 3 interrelated processes. First. at a more holistic level, there is a global transition in which “the model” initially emerges as a model of informal mathematical activity and then gradually develops into a model for more formal mathematical reasoning. Second, the transition from “model of” to “model for” involves the constitution of anew mathematical reality that can be denoted formal in relation to the original starting points of the students. Third, in the series of instructional activities, there is not 1 model, but the model actually is shaped as a series of signs, in which each new sign comes to signify activity with a previous sign in a chain of signification.  相似文献   

8.
Heinz Steinbring 《ZDM》1998,30(5):161-167
The problem of “defining” mathematics education as a proper scientific discipline has been discussed controversely for more than 20 years now. The paper tries to clarify some important aspects especially for answering the question of what makes mathematics education a specific scientific discipline and a field of research. With this aim in mind the following two dimensions are investigated: On the one hand, one has to be aware that mathematics is not “per se” the object of research in mathematics education, but that mathematical knowledge always has to be regarded as being “situated” within a social context. This means that mathematical knowledge only gains its specific epistemological meaning within a social context and that the development and understanding of mathematical knowledge is strongly influenced by the social context. On the other hand the specificity of the theory-practice-problem poses an essential demand on the scientific work in mathematics education.  相似文献   

9.
This article describes a mathematical biology workshop givento secondary school teachers of the Danville area in Virginia,USA. The goal of the workshop was to enable teams of teacherswith biology and mathematics expertise to incorporate lessonplans in mathematical modelling into the curriculum. The biologicalfocus of the activities is the lactose operon in Escherichiacoli, one of the first known intracellular regulatory networks.The modelling approach utilizes Boolean networks and tools fromdiscrete mathematics for model simulation and analysis. Theworkshop structure simulated the team science approach commonin today's practice in computational molecular biology and thusrepresents a social case study in collaborative research. Theworkshop provided all the necessary background in molecularbiology and discrete mathematics required to complete the project.The activities developed in the workshop show students the valueof mathematical modelling in understanding biochemical networkmechanisms and dynamics. The use of Boolean networks, ratherthan the more common systems of differential equations, makesthe material accessible to students with a minimal mathematicalbackground. High school students can be exposed to the excitement of mathematicalbiology from both the biological and mathematical point of view.Through the development of instructional modules, high schoolbiology and mathematics courses can be joined without havingto restructure the curriculum for either subject. The relevanceof an early introduction to mathematical biology allows studentsnot only to learn curriculum material in a innovative setting,but also creates an awareness of new educational and careeropportunities that are arising from the interconnections betweenbiological and mathematical sciences. The materials used in this workshop are available at a websitecreated by the directors: http://polymath.vbi.vt.edu/mathbio2006/.  相似文献   

10.
Applications and modelling have gained a prominent role in mathematics education reform documents and curricula. Thus, there is a growing need for studies focusing on the effective use of mathematical modelling in classrooms. Assessment is an integral part of using modelling activities in classrooms, since it allows teachers to identify and manage problems that arise in various stages of the modelling process. However, teachers’ difficulties in assessing student modelling work are a challenge to be considered when implementing modelling in the classroom. Thus, the purpose of this study was to investigate how teachers’ knowledge on generating assessment criteria for assessing student competence in mathematical modelling evolved through a professional development programme, which is based on a lesson study approach and modelling perspective. The data was collected with four teachers from two public high schools over a five-month period. The professional development programme included a cyclical process, with each cycle consisting of an introductory meeting, the implementation of a model-eliciting activity with students, and a follow-up meeting. The results showed that the professional development programme contributed to teachers’ knowledge for generating assessment criteria on the products, and the observable actions that affect the modelling cycle.  相似文献   

11.
Music as Embodied Mathematics: A Study of a Mutually Informing Affinity   总被引:1,自引:0,他引:1  
The argument examined in this paper is that music – when approached through making and responding to coherent musical structures,facilitated by multiple, intuitively accessible representations – can become a learning context in which basic mathematical ideas can be elicited and perceived as relevant and important. Students' inquiry into the bases for their perceptions of musical coherence provides a path into the mathematics of ratio,proportion, fractions, and common multiples. Ina similar manner, we conjecture that other topics in mathematics – patterns of change,transformations and invariants – might also expose, illuminate and account for more general organizing structures in music. Drawing on experience with 11–12 year old students working in a software music/math environment, we illustrate the role of multiple representations, multi-media, and the use of multiple sensory modalities in eliciting and developing students' initially implicit knowledge of music and its inherent mathematics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Flowing granular mixtures in rotating cylindrical drums arise in numerous industrial settings and are of great technological significance worldwide. To date, the development of a robust mathematical model for this process remains an open research problem. However, simple mathematical models may be developed that capture some of the underlying mechanisms, including segregation. The key lies in the analysis of the flowing surface layer whose profile is characteristically S-shaped: past models have shown that capturing this characteristic is an essential ingredient in predicting segregation. Using secondary to first-year undergraduate level mathematics, an analysis is presented of the flowing surface layer, which leads to an S-shaped profile. This problem presents an ideal case study for teaching applied mathematics and modelling. Interesting simulations that aid the visualization of this problem can be downloaded from the web, and simple classroom demonstrations of this process can be assembled with no specialized equipment.  相似文献   

13.
The paper presents how two different theories—the APC-space and the ATD—can frame in a complementary way the semiotic (or ostensive) dimension of mathematical activity in the way they approach teaching and learning phenomena. The two perspectives coincide in the same subject: the importance given to ostensive objects (gestures, discourses, written symbols, etc.) not only as signs but also as essential tools of mathematical practices. On the one hand, APC-space starts from a general semiotic analysis in terms of “semiotic bundles” that is to be integrated into a more specific epistemological analysis of mathematical activity. On the other hand, ATD proposes a general model of mathematical knowledge and practice in terms of “praxeologies” that has to include a more specific analysis of the role of ostensive objects in the development of mathematical activities in the classroom. The articulation of both theoretical perspectives is proposed as a contribution to the development of suitable frames for Networking Theories in mathematics education.  相似文献   

14.
Mathematization is critical in providing students with challenges for solving modelling tasks. Inadequate assumptions in a modelling task lead to an inadequate situational model, and to an inadequate mathematical model for the problem situation. However, the role of assumptions in solving modelling problems has been investigated only rarely. In this study, we intentionally designed two types of assumptions in two modelling tasks, namely, one task that requires non-numerical assumptions only and another that requires both non-numerical and numerical assumptions. Moreover, conceptual knowledge and procedural knowledge are also two factors influencing students’ modelling performance. However, current studies comparing modelling performance between Western and non-Western students do not consider the differences in students’ knowledge. This gap in research intrigued us and prompted us to investigate whether Taiwanese students can still perform better than German students if students’ mathematical knowledge in solving modelling tasks is differentiated. The results of our study showed that the Taiwanese students had significantly higher mathematical knowledge than did the German students with regard to either conceptual knowledge or procedural knowledge. However, if students of both countries were on the same level of mathematical knowledge, the German students were found to have higher modelling performance compared to the Taiwanese students in solving the same modelling tasks, whether such tasks required non-numerical assumptions only, or both non-numerical and numerical assumptions. This study provides evidence that making assumptions is a strength of German students compared to Taiwanese students. Our findings imply that Western mathematics education may be more effective in improving students’ ability to solve holistic modelling problems.  相似文献   

15.
ABSTRACT

A literature review establishes a working definition of recreational mathematics: a type of play which is enjoyable and requires mathematical thinking or skills to engage with. Typically, it is accessible to a wide range of people and can be effectively used to motivate engagement with and develop understanding of mathematical ideas or concepts. Recreational mathematics can be used in education for engagement and to develop mathematical skills, to maintain interest during procedural practice and to challenge and stretch students. It can also make cross-curricular links, including to history of mathematics. In undergraduate study, it can be used for engagement within standard curricula and for extra-curricular interest. Beyond this, there are opportunities to develop important graduate-level skills in problem-solving and communication. The development of a module ‘Game Theory and Recreational Mathematics’ is discussed. This provides an opportunity for fun and play, while developing graduate skills. It teaches some combinatorics, graph theory, game theory and algorithms/complexity, as well as scaffolding a Pólya-style problem-solving process. Assessment of problem-solving as a process via examination is outlined. Student feedback gives some indication that students appreciate the aims of the module, benefit from the explicit focus on problem-solving and understand the active nature of the learning.  相似文献   

16.
The simple question of how much paper is left on my toilet roll is studied from a mathematical modelling perspective. As is typical with applied mathematics, models of increasing complexity are introduced and solved. Solutions produced at each step are compared with the solution from the previous step. This process exposes students to the typical stages of mathematical modelling via an example from everyday life. Two activities are suggested for students to complete, as well as several extensions to stimulate class discussion.  相似文献   

17.
Current comparative studies such as PISA assess individual achievement in an attempt to grasp the concept of competence. Working with mathematics is then put into concrete terms in the area of application. Thereby, mathematical work is understood as a process of modelling: At first, mathematical models are taken from a real problem; then the mathematical model is solved; finally the mathematical solution is interpreted with a view to reality and the original problem is validated by the solution. During this cycle the main focus is on the transition between reality and the mathematical level. Mental objects are necessary for this transition. These mental objects are described in the German didactic with the concept of Grundvorstellungen'. In the delimitation to related educational constructs, ‘Grundvorstellungen’ can be described as mental models of a mathematical concept.  相似文献   

18.
Mathematisches Denken in der Linearen Algebra   总被引:1,自引:0,他引:1  
How can first years students learn to think and act mathematically by learning Linear Algebra? We want to present an approach that considers reflection of mathematical acting and its connections to general thinking to be an important part of learning. By understanding mathematics as a specific conventionalization of general thinking, patterns of general thinking can become the starting point for learning mathematics. This points out the specific contribution that mathematics can give to describe reality. By example of Linear Algebra, we discuss the common ground and differences between thinking in mathematics and in non-mathematical subjects. Based on this discussion, we analyse why and how these reflections can be objects of learning.  相似文献   

19.
Conclusions  Although Egyptian mathematics will probably never have the vast number of sources that still can be found in other cultures like India or Mesopotamia, there is more available than has been used so far.33 The analysis of all the available mathematical texts, taken along with the additional material from administrative economic and literary contexts related to Egyptian mathematics, is certain to provide a better foundation for understanding its role within Egyptian culture. This integrated approach represents an important advance beyond the early studies that relied exclusively on an internal analysis of a small corpus of mathematical texts, which served for several decades as the sole basis for assessing nearly three millennia of mathematical life in ancient Egypt. By carefully rereading these classical mathematical texts while according the new sources a serious first reading, we may anticipate that the fate of Egyptian mathematics faces an exciting future.  相似文献   

20.
This article reports the attitudes of students towards mathematics after they had participated in an applied mathematical modelling project that was part of an Applied Mathematics course. The students were majoring in Earth Science at the National Taiwan Normal University. Twenty-six students took part in the project. It was the first time a mathematical modelling project had been incorporated into the Applied Mathematics course for such students at this University. This was also the first time the students experienced applied mathematical modelling and used the mathematical software. The main aim of this modelling project was to assess whether the students’ attitudes toward mathematics changed after participating in the project. We used two questionnaires and interviews to assess the students. The results were encouraging especially the attitude of enjoyment. Hence the approach of the modelling project seems to be an effective method for Earth Science students.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号